期刊文献+
共找到2,110篇文章
< 1 2 106 >
每页显示 20 50 100
Multi-Level Parallel Network for Brain Tumor Segmentation
1
作者 Juhong Tie Hui Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期741-757,共17页
Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly... Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly heterogeneous appearance and shape.Deep convolution neural networks(CNNs)have recently improved glioma segmentation performance.However,extensive down-sampling such as pooling or stridden convolution in CNNs significantly decreases the initial image resolution,resulting in the loss of accurate spatial and object parts information,especially information on the small sub-region tumors,affecting segmentation performance.Hence,this paper proposes a novel multi-level parallel network comprising three different level parallel subnetworks to fully use low-level,mid-level,and high-level information and improve the performance of brain tumor segmentation.We also introduce the Combo loss function to address input class imbalance and false positives and negatives imbalance in deep learning.The proposed method is trained and validated on the BraTS 2020 training and validation dataset.On the validation dataset,ourmethod achieved a mean Dice score of 0.907,0.830,and 0.787 for the whole tumor,tumor core,and enhancing tumor core,respectively.Compared with state-of-the-art methods,the multi-level parallel network has achieved competitive results on the validation dataset. 展开更多
关键词 Convolution neural network brain tumor segmentation parallel network
下载PDF
WiFi CSI Gesture Recognition Based on Parallel LSTM-FCN Deep Space-Time Neural Network 被引量:2
2
作者 Zhiling Tang Qianqian Liu +2 位作者 Minjie Wu Wenjing Chen Jingwen Huang 《China Communications》 SCIE CSCD 2021年第3期205-215,共11页
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi... In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved. 展开更多
关键词 signal and information processing parallel LSTM-FCN neural network deep learning gesture recognition wireless channel state information
下载PDF
Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles 被引量:5
3
作者 甘永 王丽荣 +1 位作者 万磊 徐玉如 《China Ocean Engineering》 SCIE EI 2005年第3期485-496,共12页
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i... A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles. 展开更多
关键词 neural network autonomous underwater vehicles (AUV) parallel neural network-based controller (PNNC real-time part self-learning part
下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
4
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
下载PDF
DIRECT DISPLACEMENT OF PARALLEL MECHANISM WITH WAVELET NETWORK 被引量:1
5
作者 CHEN Weishan CHEN Hua LIU Junkao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期69-72,共4页
A new method solution for the direct displacement of parallel mechanism, wavelet network method, is proposed. Comparing with the classical analytical and numerical methods, this method can be extended to any parallel ... A new method solution for the direct displacement of parallel mechanism, wavelet network method, is proposed. Comparing with the classical analytical and numerical methods, this method can be extended to any parallel mechanism with any selected degree of freedom and configuration. A wavelet network suiting to approach multi-input and multi-output system is constructed. The network is optimized by analyzing the sparseness of input data and selecting the fitting wavelets by orthogonalization method according to the output data. Then it is applied to solve the direct displace- ment of a general six-degree-of-freedom parallel mechanism as a numerical example. For comparison purposes, a BP neural network is also used for this problem. Simulation results show that the wavelet network performs better than BP neural network. In addition, the wavelet network learns much faster than BP network. 展开更多
关键词 Direct displacement parallel mechanism Wavelet network
下载PDF
Designing and optimizing a parallel neural network model for predicting the solubility of diosgenin in n-alkanols
6
作者 Huichao Lv Dayong Tian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期288-294,共7页
Accurate estimation of the solubility of a chemical compound is an important issue for many industrial proce sses.To overcome the defects of some thermodynamic models and simple correlations,a parallel neural network(... Accurate estimation of the solubility of a chemical compound is an important issue for many industrial proce sses.To overcome the defects of some thermodynamic models and simple correlations,a parallel neural network(PNN) model was conceived and optimized to predict the solubility of diosgenin in seven n-alkanols(C_(1)-C_(7)).The linear regression analysis of the parity plots indicates that the PNN model can give more accurate descriptions of the solubility of diosgenin than the ordinary neural network(ONN) model.The comparison of the average root mean square deviation(RMSD) shows that the suggested model has a slight advantage over the thermodynamic NRTL model in terms of the calculating precision.Moreover,the PNN model can reflect the effects of the temperature and the chain length of the alcohol solvent on the solution behavior of diosgenin correctly and can estimate its solubility in the n-alkanols with more carbon atoms. 展开更多
关键词 SOLUBILITY DIOSGENIN parallel neural network model NRTL model
下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
7
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 parallel manipulator Adaptive control Fuzzy neural network algorithm SIMULATION
下载PDF
Towards efficient deep neural network training by FPGA-based batch-level parallelism 被引量:4
8
作者 Cheng Luo Man-Kit Sit +3 位作者 Hongxiang Fan Shuanglong Liu Wayne Luk Ce Guo 《Journal of Semiconductors》 EI CAS CSCD 2020年第2期51-62,共12页
Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a nov... Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform. 展开更多
关键词 deep neural network TRAINING FPGA batch-level parallelism
下载PDF
NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER
9
作者 覃征 刘宇 王昱 《Journal of Pharmaceutical Analysis》 SCIE CAS 2006年第2期109-112,共4页
Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which i... Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which is implemented on a cluster using MPI libraries for inter-process communication. Results High speed-up factor is achieved and execution time is reduced greatly. On the other hand, the resulting neural network has good classification accuracy not only on training sets but also on test sets. Conclusion Since the fitness evaluation is intensive, parallel particle swarm optimization shows great advantages to speed up neural network training. 展开更多
关键词 parallel computation neural network particle swarm optimization CLUSTER
下载PDF
基于混合分解和PCG-BiLSTM的风速短期预测 被引量:3
10
作者 毕贵红 黄泽 +3 位作者 赵四洪 谢旭 陈仕龙 骆钊 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期159-170,共12页
为降低风速的随机性对风力发电的影响,提高风速短期预测的精准度,提出一种基于混合分解、双通道输入、多分支PCG-BiLSTM深度学习模型的短期风速预测方法。首先,将全年风速数据分为春、夏、秋、冬4个季度,选取春季作为主要实验对象;其次... 为降低风速的随机性对风力发电的影响,提高风速短期预测的精准度,提出一种基于混合分解、双通道输入、多分支PCG-BiLSTM深度学习模型的短期风速预测方法。首先,将全年风速数据分为春、夏、秋、冬4个季度,选取春季作为主要实验对象;其次,利用奇异谱分解(SSD)和变分模态分解(VMD)以降低原始春季风速数据复杂度,生成具有不同模态且复杂度低的子分量,两种不同模式子分量组合为混合分量,实现不同模式分解算法的优势互补;最后,将混合分量以双通道的形式输入到多分支PCG-BiLSTM深度学习模型中,其模型的每个分支由卷积神经网络(CNN)与门控循环单元(GRU)并联组成时空特征提取模块,用于提取两种分解分量组合的混合分量的时空特征,各分支提取对应混合分量的时空特征经聚合后再由双向长短期记忆网络(BiLSTM)进一步提取风速信号的正向和反向双向波动规律,进而得到最终的风速预测结果。多组实验结果表明:提出的组合预测方法在短期风速预测中具有较高的精度和泛化能力,优于其他传统预测方法。 展开更多
关键词 风速 预测 深度学习 混合分解 并联网络
下载PDF
Multilayer Hex-Cells: A New Class of Hex-Cell Interconnection Networks for Massively Parallel Systems
11
作者 Mohammad Qatawneh 《International Journal of Communications, Network and System Sciences》 2011年第11期704-708,共5页
Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is intro... Scalability is an important issue in the design of interconnection networks for massively parallel systems. In this paper a scalable class of interconnection network of Hex-Cell for massively parallel systems is introduced. It is called Multilayer Hex-Cell (MLH). A node addressing scheme and routing algorithm are also presented and discussed. An interesting feature of the proposed MLH is that it maintains a constant network degree regardless of the increase in the network size degree which facilitates modularity in building blocks of scalable systems. The new addressing node scheme makes the proposed routing algorithm simple and efficient in terms of that it needs a minimum number of calculations to reach the destination node. Moreover, the diameter of the proposed MLH is less than Hex-Cell network. 展开更多
关键词 MULTILAYER Hex-Cell INTERCONNECTION network parallel System
下载PDF
A Coupled Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling 被引量:2
12
作者 YU Ai-Qing GU Xing-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第6期697-701,共5页
在相同机器上安排工作是经常在各种各样的生产系统遇到的一种状况。在这份报纸,一新联合了短暂地混乱的神经网络(CTCNN ) 被提出解决相同平行机器安排。这个问题的一个混合整数编程模型被介绍一个排列矩阵表达式转变成 CTCNN 计算体系... 在相同机器上安排工作是经常在各种各样的生产系统遇到的一种状况。在这份报纸,一新联合了短暂地混乱的神经网络(CTCNN ) 被提出解决相同平行机器安排。这个问题的一个混合整数编程模型被介绍一个排列矩阵表达式转变成 CTCNN 计算体系结构。新计算精力功能被建议除所有限制以外表示目的。特别地,在精力功能在惩罚术语之中存在的折衷问题被使用变化时间的惩罚参数克服。最后,结果与 100 个随机的起始的条件在 3 个不同规模问题上测试了证明网络收敛并且能在合理时间解决这些问题。 展开更多
关键词 机械设计 智能化系统 人工神经网络 混沌系统
下载PDF
Parallel and optimized genetic Elman network for ^(252)Cf source-driven verification system
13
作者 冯鹏 魏彪 金晶 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第4期65-71,共7页
The 252Cf source-driven verification system(SDVS)can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in252Cf source-driven noise-analysis(SDNA)... The 252Cf source-driven verification system(SDVS)can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in252Cf source-driven noise-analysis(SDNA)measurements.We propose a parallel and optimized genetic Elman network(POGEN)to identify the enrichment of235U based on the physical properties of the measured autocorrelation functions.Theoretical analysis and experimental results indicate that,for 4 different enrichment fissile materials,due to higher information utilization,more efficient network architecture,and optimized parameters,the POGEN-based algorithm can obtain identification results with higher recognition accuracy,compared to the integrated autocorrelation function(IAF)method. 展开更多
关键词 ELMAN网络 并行优化 验证系统 源驱动 遗传 自相关函数 函数识别 信息利用率
下载PDF
Parallel-Transmission: A New Usage of Multi-Radio Diversity in Wireless Mesh Network
14
作者 Yun HU Shoubao YANG +1 位作者 Qi ZHANG Peng ZHANG 《International Journal of Communications, Network and System Sciences》 2009年第1期51-57,共7页
To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses ... To fully utilize the diversity of multi-radio, a new parallel transmission method for wireless mesh network is proposed. Compared with conventional packet transmission which follows “one flow on one radio”, it uses the radio diversity to transmit the packets on different radios simultaneously. Three components are presented to achieve parallel-transmission, which are control module, selection module and schedule module. A localized selecting algorithm selects the right radios based on the quality of wireless links. Two kinds of distributed scheduling algorithms are implemented to transmit packets on the selected radios. Finally, a parallel-adaptive routing metric is presented. Simulation results by NS2 show that this parallel-transmission scheme could enhance the average throughput of network by more than 10%. 展开更多
关键词 Wireless Mesh network Radio DIVERSITY parallel TRANSMISSION Scheduling Algorithm
下载PDF
A Highly Compatible Circular-Shifting Network for Partially Parallel QC-LDPC Decoder
15
作者 Yanzhi Wang Zhenzhi Wu +2 位作者 Peipei Liu Ning Guan Hua Wang 《International Journal of Communications, Network and System Sciences》 2017年第5期24-34,共11页
The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered de... The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity. 展开更多
关键词 PARTIALLY parallel Layered Decoding Circular-Shifting network QC-LDPC Decoder Arbitrary Expansion Factor
下载PDF
基于VIKOR的多网并行传输选网算法
16
作者 林海涛 肖丹妮 王斌 《海军工程大学学报》 CAS 北大核心 2024年第3期83-88,共6页
海上异构无线网络通信场景下,针对单一无线网络难以承载大带宽业务的现实问题,提出了一种基于VIKOR的多网并行传输网络选择算法。该算法首先将多个网络的参数聚合,筛选可用网络组合;然后,结合网络属性的主客观权重和用户偏好权重得到网... 海上异构无线网络通信场景下,针对单一无线网络难以承载大带宽业务的现实问题,提出了一种基于VIKOR的多网并行传输网络选择算法。该算法首先将多个网络的参数聚合,筛选可用网络组合;然后,结合网络属性的主客观权重和用户偏好权重得到网络属性的综合权重;最后,根据VIKOR方法对网络组合进行排序,选出最佳网络组合方案。仿真结果表明:该算法具有可行性,相较于传统算法,在舰船通信业务繁忙情况下选网综合性能更优。 展开更多
关键词 异构无线网络 多网并行传输 网络组合 大带宽业务
下载PDF
基于坐标信息与多尺度并行网络的气道分割方法
17
作者 刘卫朋 李健 +2 位作者 祁业东 任子文 王源 《中国医学物理学杂志》 CSCD 2024年第10期1216-1224,共9页
为解决手术导航中气道模型精度不足的问题,提出了一种基于坐标信息与多尺度并行网络的气道分割方法。首先通过并行网络分别学习不同尺度的气道特征,以解决不同尺寸气道之间的特征冲突问题。其次提出坐标引导的上采样模块,通过浅层特征... 为解决手术导航中气道模型精度不足的问题,提出了一种基于坐标信息与多尺度并行网络的气道分割方法。首先通过并行网络分别学习不同尺度的气道特征,以解决不同尺寸气道之间的特征冲突问题。其次提出坐标引导的上采样模块,通过浅层特征中的坐标信息指导深层特征进行特征重建,限制目标的空间位置,提高模型精度。最后提出通道引导的多尺度特征聚合模块,用于在多个尺度上捕获语义信息并探索不同尺度特征之间的通道关系。在公开数据集LIDC-IDRI和EXACT'09上对提出的方法和其他模型进行训练和测试。实验表明,该方法的平均骰子系数达到了93.20%,相比于3D U-Net提高了2.61%,而假阳性率只有0.012%。此外,树长检测率和分支检测率分别达到了88.59%和97.42%。该方法可用于肺部疾病诊断或导航支气管检查等领域。 展开更多
关键词 气道分割 坐标信息 多尺度特征聚合 并行网络
下载PDF
一种融合多尺度技术和并行网络的DR检测方法
18
作者 陈宇 徐仕豹 《哈尔滨理工大学学报》 CAS 北大核心 2024年第1期87-95,共9页
针对糖尿病视网膜病变(DR)检测模型在下采样过程中关键信息丢失和模型鲁棒性差的问题,构建一个PM-Net模型(Parallel Multi-scale Network)。在下采样过程中,利用信息增强的方式设计了多尺度最大池化和多尺度卷积模块并对ResNet-50改进... 针对糖尿病视网膜病变(DR)检测模型在下采样过程中关键信息丢失和模型鲁棒性差的问题,构建一个PM-Net模型(Parallel Multi-scale Network)。在下采样过程中,利用信息增强的方式设计了多尺度最大池化和多尺度卷积模块并对ResNet-50改进。进一步,为了提高模型的鲁棒性,使用双分支的架构对模型进行扩展。提出的多尺度模块使得模型在下采样的过程中获得了更加丰富的视网膜眼底图像特征,从而提高了DR检测的性能,同时提出的双分支模型在DR检测过程中用局部信息辅助全局信息保证了模型的鲁棒性。模型在EyePACS、DDR和私有数据集进行了实验验证。实验结果表明:与主流的模型相比,本模型在EyePACS数据集上的准确率和二次加权Kappa分数分别提高了2.58%和1.31%。 展开更多
关键词 糖尿病视网膜病变 多尺度 并行网络 最大池化 ResNet-50
下载PDF
改进注意力机制嵌入PR-Net模型的水稻病害识别仿真
19
作者 路阳 刘鹏飞 +3 位作者 许思源 刘启旺 顾福谦 王鹏 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1322-1333,共12页
针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,... 针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,使特征信息完整的连续传递;在骨干模型PR-Net中嵌入改进的空间注意力机制,增强对不同尺度病斑特征信息的凝聚程度;为进一步提升病害识别的准确率,并减少模型的训练时间和推理时间,通过改变加权方式对模型结构进行优化。仿真结果表明:与InceptionResNetV2等分类模型相比,PRC-Net具有更少的训练参数、更短的训练时间和更高的识别精度,性能优于其他作物病害识别模型。 展开更多
关键词 水稻叶部病害 PRC-Net(parallel residual with coordinate attention network) 卷积神经网络 注意力机制 图像识别
下载PDF
长向量处理器高效RNN推理方法
20
作者 苏华友 陈抗抗 杨乾明 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第1期121-130,共10页
模型深度的不断增加和处理序列长度的不一致对循环神经网络在不同处理器上的性能优化提出巨大挑战。针对自主研制的长向量处理器FT-M7032,实现了一个高效的循环神经网络加速引擎。该引擎采用行优先矩阵向量乘算法和数据感知的多核并行方... 模型深度的不断增加和处理序列长度的不一致对循环神经网络在不同处理器上的性能优化提出巨大挑战。针对自主研制的长向量处理器FT-M7032,实现了一个高效的循环神经网络加速引擎。该引擎采用行优先矩阵向量乘算法和数据感知的多核并行方式,提高矩阵向量乘的计算效率;采用两级内核融合优化方法降低临时数据传输的开销;采用手写汇编优化多种算子,进一步挖掘长向量处理器的性能潜力。实验表明,长向量处理器循环神经网络推理引擎可获得较高性能,相较于多核ARM CPU以及Intel Golden CPU,类循环神经网络模型长短记忆网络可获得最高62.68倍和3.12倍的性能加速。 展开更多
关键词 多核DSP 长向量处理器 循环神经网络 并行优化
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部