A rate-dependent peridynamic ceramic model,considering the brittle tensile response,compressive plastic softening and strain-rate dependence,can accurately represent the dynamic response and crack propagation of ceram...A rate-dependent peridynamic ceramic model,considering the brittle tensile response,compressive plastic softening and strain-rate dependence,can accurately represent the dynamic response and crack propagation of ceramic materials.However,it also considers the strain-rate dependence and damage accumulation caused by compressive plastic softening during the compression stage,requiring more computational resources for the bond force evaluation and damage evolution.Herein,the OpenMP parallel optimization of the rate-dependent peridynamic ceramicmodel is investigated.Also,themodules that compute the interactions betweenmaterial points and update damage index are vectorized and parallelized.Moreover,the numerical examples are carried out to simulate the dynamic response and fracture of the ceramic plate under normal impact.Furthermore,the speed-up ratio and computational efficiency by multi-threads are evaluated and discussed to demonstrate the reliability of parallelized programs.The results reveal that the totalwall clock time has been significantly reduced after optimization,showing the promise of parallelization process in terms of accuracy and stability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11972267,11802214 and 51932006)the Fundamental Research Funds for the Central Universities(WUT:2020lll031GX).
文摘A rate-dependent peridynamic ceramic model,considering the brittle tensile response,compressive plastic softening and strain-rate dependence,can accurately represent the dynamic response and crack propagation of ceramic materials.However,it also considers the strain-rate dependence and damage accumulation caused by compressive plastic softening during the compression stage,requiring more computational resources for the bond force evaluation and damage evolution.Herein,the OpenMP parallel optimization of the rate-dependent peridynamic ceramicmodel is investigated.Also,themodules that compute the interactions betweenmaterial points and update damage index are vectorized and parallelized.Moreover,the numerical examples are carried out to simulate the dynamic response and fracture of the ceramic plate under normal impact.Furthermore,the speed-up ratio and computational efficiency by multi-threads are evaluated and discussed to demonstrate the reliability of parallelized programs.The results reveal that the totalwall clock time has been significantly reduced after optimization,showing the promise of parallelization process in terms of accuracy and stability.