The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil syste...The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.展开更多
Background: When continuous scale measurements are available, agreements between two measuring devices are assessed both graphically and analytically. In clinical investigations, Bland and Altman proposed plotting sub...Background: When continuous scale measurements are available, agreements between two measuring devices are assessed both graphically and analytically. In clinical investigations, Bland and Altman proposed plotting subject-wise differences between raters against subject-wise averages. In order to scientifically assess agreement, Bartko recommended combining the graphical approach with the statistical analytic procedure suggested by Bradley and Blackwood. The advantage of using this approach is that it enables significance testing and sample size estimation. We noted that the direct use of the results of the regression is misleading and we provide a correction in this regard. Methods: Graphical and linear models are used to assess agreements for continuous scale measurements. We demonstrate that software linear regression results should not be readily used and we provided correct analytic procedures. The degrees of freedom of the F-statistics are incorrectly reported, and we propose methods to overcome this problem by introducing the correct analytic form of the F statistic. Methods for sample size estimation using R-functions are also given. Results: We believe that the tutorial and the R-codes are useful tools for testing and estimating agreement between two rating protocols for continuous scale measurements. The interested reader may use the codes and apply them to their available data when the issue of agreement between two raters is the subject of interest.展开更多
The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a clo...The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.展开更多
A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With t...A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.展开更多
Online testing is critical to ensuring reliable operations of the next generation of supercomputers based on a kilo-core network-on-chip(NoC)interconnection fabric.We present a parallel software-based self-testing(SBS...Online testing is critical to ensuring reliable operations of the next generation of supercomputers based on a kilo-core network-on-chip(NoC)interconnection fabric.We present a parallel software-based self-testing(SBST)solution that makes use of the bounded model checking(BMC)technique to generate test sequences and parallel packets.In this method,the parallel SBST with BMC derives the leading sequence for each router’s internal function and detects all functionally-testable faults related to the function.A Monte-Carlo simulation algorithm is then used to search for the approximately optimum configuration of the parallel packets,which guarantees the test quality and minimizes the test cost.Finally,a multi-threading technology is used to ensure that the Monte-Carlo simulation can reach the approximately optimum configuration in a large random space and reduce the generating time of the parallel test.Experimental results show that the proposed method achieves a high fault coverage with a reduced test overhead.Moreover,by performing online testing in the functional mode with SBST,it effectively avoids the over-testing problem caused by functionally untestable turns in kilo-core NoCs.展开更多
基金Project (No. 50478022) supported by the National Natural Science Foundation of China
文摘The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.
文摘Background: When continuous scale measurements are available, agreements between two measuring devices are assessed both graphically and analytically. In clinical investigations, Bland and Altman proposed plotting subject-wise differences between raters against subject-wise averages. In order to scientifically assess agreement, Bartko recommended combining the graphical approach with the statistical analytic procedure suggested by Bradley and Blackwood. The advantage of using this approach is that it enables significance testing and sample size estimation. We noted that the direct use of the results of the regression is misleading and we provide a correction in this regard. Methods: Graphical and linear models are used to assess agreements for continuous scale measurements. We demonstrate that software linear regression results should not be readily used and we provided correct analytic procedures. The degrees of freedom of the F-statistics are incorrectly reported, and we propose methods to overcome this problem by introducing the correct analytic form of the F statistic. Methods for sample size estimation using R-functions are also given. Results: We believe that the tutorial and the R-codes are useful tools for testing and estimating agreement between two rating protocols for continuous scale measurements. The interested reader may use the codes and apply them to their available data when the issue of agreement between two raters is the subject of interest.
文摘The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.
基金supported by“11th Five-year Projects”pre-research projects fund of the National Arming Department
文摘A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.
基金supported in part by the National Key Research and Development Program of China under Grant No.2020YFB1600201the National Natural Science Foundation of China(NSFC)under Grant Nos.61974105,62090024,U20A20202the Zhejiang Lab under Grant No.2021KC0AB01.
文摘Online testing is critical to ensuring reliable operations of the next generation of supercomputers based on a kilo-core network-on-chip(NoC)interconnection fabric.We present a parallel software-based self-testing(SBST)solution that makes use of the bounded model checking(BMC)technique to generate test sequences and parallel packets.In this method,the parallel SBST with BMC derives the leading sequence for each router’s internal function and detects all functionally-testable faults related to the function.A Monte-Carlo simulation algorithm is then used to search for the approximately optimum configuration of the parallel packets,which guarantees the test quality and minimizes the test cost.Finally,a multi-threading technology is used to ensure that the Monte-Carlo simulation can reach the approximately optimum configuration in a large random space and reduce the generating time of the parallel test.Experimental results show that the proposed method achieves a high fault coverage with a reduced test overhead.Moreover,by performing online testing in the functional mode with SBST,it effectively avoids the over-testing problem caused by functionally untestable turns in kilo-core NoCs.