Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element...Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.展开更多
The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localizat...The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.展开更多
In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear...In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.展开更多
This paper presented an improved channel estimator for orthogonal frequency division muhiplexing (OFDM) systems using joint time delay detection and channel gain estimation. The algorithm well designs an adjustment ...This paper presented an improved channel estimator for orthogonal frequency division muhiplexing (OFDM) systems using joint time delay detection and channel gain estimation. The algorithm well designs an adjustment scheme using the time correlation of time delays to increase the accuracy of the time delay detection. The most attractive advantage is that the complicated matrix calculation is replaced by the search steps to estimate the channel parameters without significantly increasing the complexity of the system. The computer simulation demonstrates that the proposed algorithm can track the time delays adaptively and improve the channel estimation performance. Consequently, the better system performance will be achieved.展开更多
Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been establi...Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
It is proposed firstly that the original phase and the time-delay are the main factors which affect the measuring resolution of the multitone complex envelope method. The effects of these factors are analysed and chec...It is proposed firstly that the original phase and the time-delay are the main factors which affect the measuring resolution of the multitone complex envelope method. The effects of these factors are analysed and checked by the computer simulation. Finally, three possible ways to eliminate these effects are given.展开更多
In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling pro...In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.展开更多
Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine schedul...Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively.展开更多
For a class of time-delay discrete-time linear systems with external disturbance and measurement noise, the interval estimation problems of state and measurement noise are investigated in this paper. First, the system...For a class of time-delay discrete-time linear systems with external disturbance and measurement noise, the interval estimation problems of state and measurement noise are investigated in this paper. First, the system state together with the time-delay term and measurement noise is augmented as a new state, and a singular system is then constructed. Subsequently, a kind of decoupling technique is employed to eliminate the effect of external disturbance, and an observer is designed to simultaneously estimate the system state and measurement noise. Based on the estimated state and measurement noise, the interval estimations of system state and measurement noise are obtained by reachability analysis technique. Finally, the effectiveness of the proposed method is verified by a four-tank liquid level system.展开更多
Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force esti...Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms.Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs.This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism.The direct kinematics model and the inverse kinematics model are established.The force Jacobian matrix is derived based on the kinematics model.Thus,the indirect force estimation model is established.Then,the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described.Furthermore,an adaptive tripod static gait is designed.The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait.Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system.An experiment is carried out to validate the indirect force estimation model.The adaptive gait is tested in another experiment.Experiment results show that the robot can successfully step on a 0.2 m-high obstacle.This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.展开更多
Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road servic...Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.展开更多
This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
This paper proposes a robust decoupling control scheme using a time-delay estimation technique for a parallel kinematic machine to enhance its trajectory tracking performance.The dynamic model of a parallel kinematic ...This paper proposes a robust decoupling control scheme using a time-delay estimation technique for a parallel kinematic machine to enhance its trajectory tracking performance.The dynamic model of a parallel kinematic machine(PKM)is a multivariable nonlinear strongly coupled system that is always affected by uncertainties and external disturbances.The proposed controller employs the time-delay estimation(TDE)technique to estimate the dynamic model of a PKM with uncertainties and disturbances,thus obtaining a simple model structure.The TDE technique involves estimating the unknown system dynamics by intentionally using a time-delayed signal,which will inevitably lead to estimation errors.Hence,the proposed controller effectively reduces the unfavourable TDE error by combining fast and robust integral terminal sliding mode control with TDE(TDE-ITSMC).In turn,the TDE technique can reduce the upper bound on the switching gain in the sliding mode control(SMC)scheme,which reduces damage to the robot.Finally,comparative experimental studies with other controllers confirm that TDEITSMC offers excellent trajectory tracking accuracy and is a practical robust control scheme for PKMs.展开更多
In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of ti...In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.展开更多
Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementatio...Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementation of the signal detection and estimation system which has the parallel processing function, and gives some experimental results. The results of GW-OTHR experiments show that this system can successfully detect and estimate the above-mentioned targets.展开更多
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
文摘Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.
文摘The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.
基金supported by the National Natural Science Foundation of China(51877015,U1831117)the Cooperation Agreement Foundation by the Department of Science and Technology of Guizhou Province of China(LH[2017]7320,LH[2017]7321,[2015]7249)+2 种基金the Innovation Group Major Research Program Funded by Guizhou Provincial Education Department(KY[2016]051)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China(KY[2018]075)PhD Research Startup Foundation of Tongren University(trxy DH1710)。
文摘In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.
基金National Natural Science Foundation of China(No. 60272079, No. 60332030)NationalHigh Technology Research and DevelopmentProgram of China ( 863 Program) ( No.2003AA123310)
文摘This paper presented an improved channel estimator for orthogonal frequency division muhiplexing (OFDM) systems using joint time delay detection and channel gain estimation. The algorithm well designs an adjustment scheme using the time correlation of time delays to increase the accuracy of the time delay detection. The most attractive advantage is that the complicated matrix calculation is replaced by the search steps to estimate the channel parameters without significantly increasing the complexity of the system. The computer simulation demonstrates that the proposed algorithm can track the time delays adaptively and improve the channel estimation performance. Consequently, the better system performance will be achieved.
基金Sponsored by the National Defense Science and Technology Laboratory Foundation (9140C3601130802)
文摘Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
文摘It is proposed firstly that the original phase and the time-delay are the main factors which affect the measuring resolution of the multitone complex envelope method. The effects of these factors are analysed and checked by the computer simulation. Finally, three possible ways to eliminate these effects are given.
基金Supported by the National High Technology Research and Development Programme of China(No.2009AA043000)the National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the scheduling efficiency of photolithography,bottleneck process of wafer fabrications in the semiconductor industry,an effective estimation of distribution algorithm is proposed for scheduling problems of parallel litho machines with reticle constraints,where multiple reticles are available for each reticle type.First,the scheduling problem domain of parallel litho machines is described with reticle constraints and mathematical programming formulations are put forward with the objective of minimizing total weighted completion time.Second,estimation of distribution algorithm is developed with a decoding scheme specially designed to deal with the reticle constraints.Third,an insert-based local search with the first move strategy is introduced to enhance the local exploitation ability of the algorithm.Finally,simulation experiments and analysis demonstrate the effectiveness of the proposed algorithm.
基金National Natural Science Foundations of China(Nos.61573144,61174040)
文摘Scheduling problem is a well-known combinatorial optimization problem.An effective improved estimation of distribution algorithm(IEDA) was proposed for minimizing the makespan of the unrelated parallel machine scheduling problem(UPMSP).Mathematical description was given for the UPMSP.The IEDA which was combined with variable neighborhood search(IEDA_VNS) was proposed to solve the UPMSP in order to improve local search ability.A new encoding method was designed for representing the feasible solutions of the UPMSP.More knowledge of the UPMSP were taken consideration in IEDA_ VNS for probability matrix which was based the processing time matrix.The simulation results show that the proposed IEDA_VNS can solve the problem effectively.
基金supported in part by the National Nature Science Foundation of China(No.61973105)the Natural Science Foundation of Henan Province(No.232300420147)the Fundamental Research Funds for the Universities of Henan Province(No.NSFRF180335).
文摘For a class of time-delay discrete-time linear systems with external disturbance and measurement noise, the interval estimation problems of state and measurement noise are investigated in this paper. First, the system state together with the time-delay term and measurement noise is augmented as a new state, and a singular system is then constructed. Subsequently, a kind of decoupling technique is employed to eliminate the effect of external disturbance, and an observer is designed to simultaneously estimate the system state and measurement noise. Based on the estimated state and measurement noise, the interval estimations of system state and measurement noise are obtained by reachability analysis technique. Finally, the effectiveness of the proposed method is verified by a four-tank liquid level system.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)Research Fund of the State Key Lab of MSV of China(Grant No.MSV201208)
文摘Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms.Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs.This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism.The direct kinematics model and the inverse kinematics model are established.The force Jacobian matrix is derived based on the kinematics model.Thus,the indirect force estimation model is established.Then,the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described.Furthermore,an adaptive tripod static gait is designed.The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait.Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system.An experiment is carried out to validate the indirect force estimation model.The adaptive gait is tested in another experiment.Experiment results show that the robot can successfully step on a 0.2 m-high obstacle.This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.
基金Under the auspices of National Natural Science Foundation of China(No.41371190,31021001)Scientific and Tech-nical Projects of Western China Transportation Construction,Ministry of Transport of China(No.2008-318-799-17)
文摘Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.
文摘This paper givers an estimated formula of convergence rate for parallel multisplitting iterative method.Using the formula,we can simplify and unify the proof of convergence of PMI_method.
基金supported by the National Natural Science Foundation of China(Grant No.51935010)。
文摘This paper proposes a robust decoupling control scheme using a time-delay estimation technique for a parallel kinematic machine to enhance its trajectory tracking performance.The dynamic model of a parallel kinematic machine(PKM)is a multivariable nonlinear strongly coupled system that is always affected by uncertainties and external disturbances.The proposed controller employs the time-delay estimation(TDE)technique to estimate the dynamic model of a PKM with uncertainties and disturbances,thus obtaining a simple model structure.The TDE technique involves estimating the unknown system dynamics by intentionally using a time-delayed signal,which will inevitably lead to estimation errors.Hence,the proposed controller effectively reduces the unfavourable TDE error by combining fast and robust integral terminal sliding mode control with TDE(TDE-ITSMC).In turn,the TDE technique can reduce the upper bound on the switching gain in the sliding mode control(SMC)scheme,which reduces damage to the robot.Finally,comparative experimental studies with other controllers confirm that TDEITSMC offers excellent trajectory tracking accuracy and is a practical robust control scheme for PKMs.
基金This work was supported by Natural Science Foundation of China and Shandong Province.
文摘In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.
文摘Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementation of the signal detection and estimation system which has the parallel processing function, and gives some experimental results. The results of GW-OTHR experiments show that this system can successfully detect and estimate the above-mentioned targets.