A stochastic holonomy along a loop obtained from the OU process on the path space over acompact Riemannian manifold is computed. The result shows that the stochastic holonomy just gives theparallel transport with resp...A stochastic holonomy along a loop obtained from the OU process on the path space over acompact Riemannian manifold is computed. The result shows that the stochastic holonomy just gives theparallel transport with respect to the Markov connection along the OU process on the path space.展开更多
A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controlle...A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.展开更多
This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-ba...This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.展开更多
The effects of the E × B drift and ballooning-like transport on the edge plasma in EAST tokamak are investigated with a simplified fluid model. The simulation results show that the E × B drift and ballooning...The effects of the E × B drift and ballooning-like transport on the edge plasma in EAST tokamak are investigated with a simplified fluid model. The simulation results show that the E × B drift and ballooning-like transport affect the plasma behavior. When the toroidal field is reversed, at the low field side the density is much larger and temperatures (both electron and ion) are lower, and the profiles of the density and temperatures become more symmetric. With the ballooning-like transport considered, the spatial ballooning-like distribution at the low field side is not very important, but the magnitude affects the ratios of the inner/outer particle flux and energy as well as the E × B drift. At the top of the scrape-off layer, the Mach number exceeding 0.3 for the normal toroidal field and approaching 0.2 for the reversed toroidal field in the simulation are obtained when the drift and ballooning-like transport are included in the model.展开更多
A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a duali...A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.展开更多
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by m...Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.展开更多
基金This work was supported partly by the National Natural Science Foundation of China (Grant No. 10101002).
文摘A stochastic holonomy along a loop obtained from the OU process on the path space over acompact Riemannian manifold is computed. The result shows that the stochastic holonomy just gives theparallel transport with respect to the Markov connection along the OU process on the path space.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2013ZX06002001- 007), the National Key Scientific Instrument and Equipment Development Projects, China (No. 2012YQ180118) and the National Natural Science Foundation of China (Nos. 11275110, 11075091 and 11105081).
文摘A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling.
基金supported in part by the National Basic Research Program(973 Program,No.2015CB352400)NSFC under grant U1401258U.S NSF under grant CCF-1016966
文摘This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.
基金supported by National Natural Science Foundation of China(No.10675129)
文摘The effects of the E × B drift and ballooning-like transport on the edge plasma in EAST tokamak are investigated with a simplified fluid model. The simulation results show that the E × B drift and ballooning-like transport affect the plasma behavior. When the toroidal field is reversed, at the low field side the density is much larger and temperatures (both electron and ion) are lower, and the profiles of the density and temperatures become more symmetric. With the ballooning-like transport considered, the spatial ballooning-like distribution at the low field side is not very important, but the magnitude affects the ratios of the inner/outer particle flux and energy as well as the E × B drift. At the top of the scrape-off layer, the Mach number exceeding 0.3 for the normal toroidal field and approaching 0.2 for the reversed toroidal field in the simulation are obtained when the drift and ballooning-like transport are included in the model.
文摘A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504102)the Scientific Research Items Foundation of Hubei Educational Committee(Grant Nos.Q20161803 and D20171803)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(Grant No.BK201407)
文摘Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.