Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ...Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.展开更多
AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal ala...AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase(PNALT).METHODS We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase(PIALT1) group [alanine transaminase(ALT) within 1-2 × upper limit of normal value(ULN)], and 64 in PIALT2 group(ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed.RESULTS The pathological examination revealed moderate inflammatory necrosis ratios of 16.81%(16/95), 32.56%(28/86), and 45.31%(28/64), and moderate liverfibrosis of 24.2%(23/95), 33.72%(29/86), and 43.75%(28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group(P < 0.05). No significant difference was found in the areas under the curve(AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group(P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference(P > 0.05) was found in AUCs for all comparisons(P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI(P < 0.05).CONCLUSION APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis.展开更多
Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible...Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact.In this study,a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type,barrier stiffness,and flow aspect ratio(flow height to flow length)on the reaction force between the impacting medium and flexible barrier.Results show that,in contrast to flexible barriers for resisting rockfall,the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness.This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing,and only a small portion is forwarded to the barrier.Furthermore,a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder,and a flexible barrier.Under the circumstance of an extremely elongated debris flow event,i.e.,low aspect ratio,the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.展开更多
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing...The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.展开更多
A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures t...A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.展开更多
To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed freq...To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations.展开更多
强震作用下预应力框架锚索可能出现内锚段松脱、锚索拉断等震害,在锚头处设置弹簧是一种新型抗震措施,而弹簧刚度的合理选取对改善锚索受力至关重要。建立在锚头处设置弹簧预应力锚索框架的加固基岩-覆盖层边坡三维数值模型,研究边坡在...强震作用下预应力框架锚索可能出现内锚段松脱、锚索拉断等震害,在锚头处设置弹簧是一种新型抗震措施,而弹簧刚度的合理选取对改善锚索受力至关重要。建立在锚头处设置弹簧预应力锚索框架的加固基岩-覆盖层边坡三维数值模型,研究边坡在不同峰值加速度、不同持时地震波作用下响应规律,调整锚索-弹簧串联体系等效刚度大小,分析坡体永久位移和锚索轴力减载比随弹簧刚度的非线性变化特征;以控制边坡位移及锚索减载效果为目标,提出弹簧组件的合理刚度确定方法。研究表明:随弹簧刚度降低,缓冲减震作用逐渐显著;坡顶水平加速度受刚度变化影响较小,但当弹簧刚度低于临界值后边坡位移及弹簧变形量急剧增加;以边坡永久位移实际调查经验限值为首要控制条件,结合位移、弹簧峰值行程随刚度变化拟合“直-曲分界点”曲线,以共同确定弹簧刚度下限;同理,依据减载比拟合曲线轴力削减明显区段得出刚度上限,以保证一定工程经济性。针对算例模型取永久位移10 cm、拟合曲线曲率k小于0.002 k max作为直曲分界判断依据,得0.4 g~0.6g强震下弹簧刚度区间为(2.5,3.8)kN/mm,研究方法可为边坡预应力锚固工程抗震设计提供参考。展开更多
文摘Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.
文摘AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase(PNALT).METHODS We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase(PIALT1) group [alanine transaminase(ALT) within 1-2 × upper limit of normal value(ULN)], and 64 in PIALT2 group(ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed.RESULTS The pathological examination revealed moderate inflammatory necrosis ratios of 16.81%(16/95), 32.56%(28/86), and 45.31%(28/64), and moderate liverfibrosis of 24.2%(23/95), 33.72%(29/86), and 43.75%(28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group(P < 0.05). No significant difference was found in the areas under the curve(AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group(P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference(P > 0.05) was found in AUCs for all comparisons(P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI(P < 0.05).CONCLUSION APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis.
基金support from the National Natural Science Foundation of China (Grant Nos. 51809261, 11672318, and 51709052)financial support from the Theme-based Research Grant T22-603/15N+1 种基金the General Research Fund 16209717 provided by the Research Grants Council of the Government of Hong Kong SAR, Chinafinancial support by the Hong Kong Jockey Club Disaster Preparedness and Response Institute (HKJCDPRI18EG01)
文摘Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact.In this study,a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type,barrier stiffness,and flow aspect ratio(flow height to flow length)on the reaction force between the impacting medium and flexible barrier.Results show that,in contrast to flexible barriers for resisting rockfall,the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness.This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing,and only a small portion is forwarded to the barrier.Furthermore,a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder,and a flexible barrier.Under the circumstance of an extremely elongated debris flow event,i.e.,low aspect ratio,the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.
基金supported by the National Natural Science Foundation of China (Nos.11302011,11372023, 11172025)
文摘The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.
文摘A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50478031)China Postdoctoral Science Foundation(Grant No.2006040240)
文摘To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations.
文摘强震作用下预应力框架锚索可能出现内锚段松脱、锚索拉断等震害,在锚头处设置弹簧是一种新型抗震措施,而弹簧刚度的合理选取对改善锚索受力至关重要。建立在锚头处设置弹簧预应力锚索框架的加固基岩-覆盖层边坡三维数值模型,研究边坡在不同峰值加速度、不同持时地震波作用下响应规律,调整锚索-弹簧串联体系等效刚度大小,分析坡体永久位移和锚索轴力减载比随弹簧刚度的非线性变化特征;以控制边坡位移及锚索减载效果为目标,提出弹簧组件的合理刚度确定方法。研究表明:随弹簧刚度降低,缓冲减震作用逐渐显著;坡顶水平加速度受刚度变化影响较小,但当弹簧刚度低于临界值后边坡位移及弹簧变形量急剧增加;以边坡永久位移实际调查经验限值为首要控制条件,结合位移、弹簧峰值行程随刚度变化拟合“直-曲分界点”曲线,以共同确定弹簧刚度下限;同理,依据减载比拟合曲线轴力削减明显区段得出刚度上限,以保证一定工程经济性。针对算例模型取永久位移10 cm、拟合曲线曲率k小于0.002 k max作为直曲分界判断依据,得0.4 g~0.6g强震下弹簧刚度区间为(2.5,3.8)kN/mm,研究方法可为边坡预应力锚固工程抗震设计提供参考。