The polarization switching(PS) and polarization bistability(PB) characteristics of a 1550-nm vertical-cavity surfaceemitting laser(VCSEL) subjected to orthogonal optical injection are systematically investigated...The polarization switching(PS) and polarization bistability(PB) characteristics of a 1550-nm vertical-cavity surfaceemitting laser(VCSEL) subjected to orthogonal optical injection are systematically investigated.The simulated results show that the PS and polarization-resolved nonlinear dynamical states of the VCSEL are critically dependent on the changing paths of the injected power.The polarization dynamics for different scanning directions of the injected power is presented to explain the polarization evolution during the formation of PS.In the case of forward scanning injected power,with the increase of frequency detuning level between the VCSEL and the injected light,the injected power required for PS gradually increases for negative frequency detuning but exhibits fluctuations for positive frequency detuning.In the case of reversely scanning injected power,the injected power required for PS displays fluctuant changes within the whole frequency detuning range.Specifically,PS may disappear under certain negative frequency detuning and large bias current.Furthermore,the hysteresis width as a function of the frequency detuning is calculated,and the regions for the appearance and disappearance of PB have been determined in the parameter space of the bias current and frequency detuning.展开更多
The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the ext...The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.展开更多
Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically stud...Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective f...The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.展开更多
During the operation of a high-power neutral beam injection (NBI) system on theHL-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize theNBI performance. The vacuum valve opening pro...During the operation of a high-power neutral beam injection (NBI) system on theHL-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize theNBI performance. The vacuum valve opening process and NBI period in the HL-1M experimentwere displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of theneutral beam (NB) and its interaction with plasma were given. Finally, the reason possible forplasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosiscan provide more information of the NBI.展开更多
Objectives: To present the effect of intravitreal ranibizumab (IVR) therapy combined with sulfotanshinone sodium (SS) injection in a patient suffering from type II optic disc vasculitis (ODV). Methods: A 26-year-old f...Objectives: To present the effect of intravitreal ranibizumab (IVR) therapy combined with sulfotanshinone sodium (SS) injection in a patient suffering from type II optic disc vasculitis (ODV). Methods: A 26-year-old female patient was diagnosed with type II ODV with macular edema (ME). The information was obtained by complete medical and ophthalmic history taking and a detailed ophthalmic examination at the initial and follow-up visits. Functional and morphological outcomes at baseline, 1 week and 1 month following IVR+SS injections, are presented. Results: Best-corrected visual acuity (BCVA) improved from 78 letters (ETDRS) at baseline to 90 letters at 1-week follow-up and maintained stable through 1-month follow-up. Central retinal thickness (CRT) measured by optical coherence tomography (OCT) decreased from 465 μm at baseline to 240 μm at 1-week follow-up and to 226 μm at 1-month follow-up. Mean deviation (MD) measured by perimetry increased from ?5.17 dB to ?4.59 dB and to ?4.29 dB, respectively. Fluorescein angiography (FFA) showed that the initial macular edema at baseline disappeared while the arm-retina circulation time (ART) was also greatly shortened when compared to the baseline. Electroretinogram (ERG) measured at 1-month follow-up demonstrated an overall improvement of the retinal function after the injection. No ocular or systemic side effects were detected. Conclusions: IVR+SS injection may lead to resolution of the associated ME and improve the retina morphologically as well as functionally. To our knowledge, this is the first case of a type II ODV benefiting from treatment with IVR+SS injection. The observed results warrant further investigation.展开更多
On the basis of oxidative decoloration of bromopyrogallol red (BPR) with H2O2, catalyzed by horseradish peroxidase( HRP), and the sequential injection renewable surface technique( SI-RST), a highly sensitive opt...On the basis of oxidative decoloration of bromopyrogallol red (BPR) with H2O2, catalyzed by horseradish peroxidase( HRP), and the sequential injection renewable surface technique( SI-RST), a highly sensitive optical-fiber sensor spectrophotometric method for the enzymatic determination of hydrogen peroxide was proposed. By coupling with a glucose oxidase(GOD)-catalyzed reaction, the method was used to determine glucose in human serum. The considerations in system and flow cell design, and factors that influence the determination performance are discussed. With 100μL of sample loaded and 0. 6 mg of bead trapped, the linear response range from 5.0 × 10^-8 to 5.2 × 10^-6 mol/L BPR with a detection limit(3σ) of 2. 5 ×10 ^-8 mol/L BPR, and a precision of 1.1% RSD( n = 11 ) and a throughput of a 80 samples per hour can be achieved. Under the conditions of a 8. 7 × 10^ -6 mol/L BPR substrate, 0. 04 unit/mL HRP, 600 s reaction time and a reaction temperature of 37℃, the linear response range for H2O2 was from 5.0 × 10^-8 to 7.0 × 10^-6 mol/L with a detection limit(3σ) of 1.0 × 10^-8 mol/L and a precision of 3.7% RSD ( n = 11 ). The linear response range by coupling with a GOD-catalyzed reaction was from 1.0 × 10^-7 to 1.0 × 10^-5 mol/L. The method was directly applied to determine glucose in human serum. Glucose contents obtained by the proposed procedure were compared with those obtained by using the phenol-4-AAP method, the error was found to be less than 3%.展开更多
With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i n...With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i ncreased rapidly in the recent years. The key technologies of fabrication of asp heric plastic lens are the design and manufacturing moulds, selection of proper injection moulding equipment, and optimization of injection moulding parameters etc. In this paper, the effect of injection pressure, moulding temperature, cool ing time and injection speed on the surface profile of the lenses during injecti on and holding process is investigated. Surface quality of plastic lenses is mea sured by Talysurf Texture Measuring System. The experimental results showed that the injection pressure and moulding temperature are important parameters compar ing to cooling time and injection speed. A bit change of injection pressure or m oulding temperature will affect the property of the surface profile. Either incr easing injection pressure or mould temperature can achieve less shrinkage. Other wise, a lower injection pressure will produce more shrinkage, more air traps and a lower mould temperature results greater warp and higher shrinkage. The dynami c process of injection for optical plastic lenses is simulated by 3D Moldflow pl astic Insight software (MPI). The MPI will help us to optimize injection mouldin g parameters.展开更多
Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are prop...Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.展开更多
The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrate...The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrated that fash boiling spray can generate shorter and wider spray with improved atomization and evaporation to promote a better air-fuel mixing process.In this study,macroscopic(far-field)spray morphologies and primary breakup(near-field)characteristics of a two-hole gasoline direct injection injector are investigated under non-flash boiling and flash boiling conditions.High speed macroscopic and microscopic imaging was used to capture the overall spray structure and near-field characteristics,respectively.N-Hexane is used as the test fuel with the injection pressure ranging from 10 MPa up to 40 MPa.For sub-cooled liquid fuel sprays,increasing fuel pressure contributes to enhanced fuel atomization and evaporation.Evident collapses occurred under fare flash boiling conditions,and higher injection pressure weakened this phenomenon since the spray cone angle decreased due to a higher injection velocity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61178011,61275116,and 61475127)the Natural Science Foundation of Chongqing City,China(Grant No.2012jjB40011)
文摘The polarization switching(PS) and polarization bistability(PB) characteristics of a 1550-nm vertical-cavity surfaceemitting laser(VCSEL) subjected to orthogonal optical injection are systematically investigated.The simulated results show that the PS and polarization-resolved nonlinear dynamical states of the VCSEL are critically dependent on the changing paths of the injected power.The polarization dynamics for different scanning directions of the injected power is presented to explain the polarization evolution during the formation of PS.In the case of forward scanning injected power,with the increase of frequency detuning level between the VCSEL and the injected light,the injected power required for PS gradually increases for negative frequency detuning but exhibits fluctuations for positive frequency detuning.In the case of reversely scanning injected power,the injected power required for PS displays fluctuant changes within the whole frequency detuning range.Specifically,PS may disappear under certain negative frequency detuning and large bias current.Furthermore,the hysteresis width as a function of the frequency detuning is calculated,and the regions for the appearance and disappearance of PB have been determined in the parameter space of the bias current and frequency detuning.
基金Project supported by the National Natural Science Foundation of China (Grant No 60577019)
文摘The period-one oscillation produced by an external optical pulse injection driven semiconductor laser is applied to clock recovery and frequency division. By adjusting the repetition rate or injection power of the external injection optical pulses to lock the different harmonic frequencies of the period-one state, the clock recovery and the frequency division (the second and third frequency divisions) are achieved experimentally. In addition, in frequency locking ranges of 2 GHz and 1.9 GHz, the second and third frequency divisions are obtained with the phase noise lower than 100 dBc/Hz, respectively. Our experimental results are consistent well with the numerical simulations.
基金the National Natural Science Foundation of China(Grant Nos.61775184 and 61875167).
文摘Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金Project supported by the National Natural Science Foundation of China(Grant No.62005215)。
文摘The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
文摘During the operation of a high-power neutral beam injection (NBI) system on theHL-1M tokamak, an optical diagnostic means using CCD camera was developed to characterize theNBI performance. The vacuum valve opening process and NBI period in the HL-1M experimentwere displayed by a lot of photos taken with this means. Thus, the Hα emission profiles of theneutral beam (NB) and its interaction with plasma were given. Finally, the reason possible forplasma breakdown during NBI mode Ⅱ discharge was investigated. Therefore, this in-situ diagnosiscan provide more information of the NBI.
文摘Objectives: To present the effect of intravitreal ranibizumab (IVR) therapy combined with sulfotanshinone sodium (SS) injection in a patient suffering from type II optic disc vasculitis (ODV). Methods: A 26-year-old female patient was diagnosed with type II ODV with macular edema (ME). The information was obtained by complete medical and ophthalmic history taking and a detailed ophthalmic examination at the initial and follow-up visits. Functional and morphological outcomes at baseline, 1 week and 1 month following IVR+SS injections, are presented. Results: Best-corrected visual acuity (BCVA) improved from 78 letters (ETDRS) at baseline to 90 letters at 1-week follow-up and maintained stable through 1-month follow-up. Central retinal thickness (CRT) measured by optical coherence tomography (OCT) decreased from 465 μm at baseline to 240 μm at 1-week follow-up and to 226 μm at 1-month follow-up. Mean deviation (MD) measured by perimetry increased from ?5.17 dB to ?4.59 dB and to ?4.29 dB, respectively. Fluorescein angiography (FFA) showed that the initial macular edema at baseline disappeared while the arm-retina circulation time (ART) was also greatly shortened when compared to the baseline. Electroretinogram (ERG) measured at 1-month follow-up demonstrated an overall improvement of the retinal function after the injection. No ocular or systemic side effects were detected. Conclusions: IVR+SS injection may lead to resolution of the associated ME and improve the retina morphologically as well as functionally. To our knowledge, this is the first case of a type II ODV benefiting from treatment with IVR+SS injection. The observed results warrant further investigation.
文摘On the basis of oxidative decoloration of bromopyrogallol red (BPR) with H2O2, catalyzed by horseradish peroxidase( HRP), and the sequential injection renewable surface technique( SI-RST), a highly sensitive optical-fiber sensor spectrophotometric method for the enzymatic determination of hydrogen peroxide was proposed. By coupling with a glucose oxidase(GOD)-catalyzed reaction, the method was used to determine glucose in human serum. The considerations in system and flow cell design, and factors that influence the determination performance are discussed. With 100μL of sample loaded and 0. 6 mg of bead trapped, the linear response range from 5.0 × 10^-8 to 5.2 × 10^-6 mol/L BPR with a detection limit(3σ) of 2. 5 ×10 ^-8 mol/L BPR, and a precision of 1.1% RSD( n = 11 ) and a throughput of a 80 samples per hour can be achieved. Under the conditions of a 8. 7 × 10^ -6 mol/L BPR substrate, 0. 04 unit/mL HRP, 600 s reaction time and a reaction temperature of 37℃, the linear response range for H2O2 was from 5.0 × 10^-8 to 7.0 × 10^-6 mol/L with a detection limit(3σ) of 1.0 × 10^-8 mol/L and a precision of 3.7% RSD ( n = 11 ). The linear response range by coupling with a GOD-catalyzed reaction was from 1.0 × 10^-7 to 1.0 × 10^-5 mol/L. The method was directly applied to determine glucose in human serum. Glucose contents obtained by the proposed procedure were compared with those obtained by using the phenol-4-AAP method, the error was found to be less than 3%.
文摘With the rapid development of information and multi me dia technologies, the demand for the optical plastic aspheric elements used in o pto-electronic devices, camera, optical disc and projector lens etc. has been i ncreased rapidly in the recent years. The key technologies of fabrication of asp heric plastic lens are the design and manufacturing moulds, selection of proper injection moulding equipment, and optimization of injection moulding parameters etc. In this paper, the effect of injection pressure, moulding temperature, cool ing time and injection speed on the surface profile of the lenses during injecti on and holding process is investigated. Surface quality of plastic lenses is mea sured by Talysurf Texture Measuring System. The experimental results showed that the injection pressure and moulding temperature are important parameters compar ing to cooling time and injection speed. A bit change of injection pressure or m oulding temperature will affect the property of the surface profile. Either incr easing injection pressure or mould temperature can achieve less shrinkage. Other wise, a lower injection pressure will produce more shrinkage, more air traps and a lower mould temperature results greater warp and higher shrinkage. The dynami c process of injection for optical plastic lenses is simulated by 3D Moldflow pl astic Insight software (MPI). The MPI will help us to optimize injection mouldin g parameters.
基金Project supported by the Sichuan Science and Technology Program,China(Grant No.2019YJ0530)the Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)+1 种基金the Innovative Training Program for College Student of Sichuan Normal University,China(Grant No.S20191063609)the National Natural Science Foundation of China(Grant No.61205079)。
文摘Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.
基金the National Natural Science Foundation of China(No.52006140)。
文摘The increasingly stringent emission regulations and fuel consumption requirements have elevated the demands of internal combustion engines with higher fuel efficiency and lower emissions.It has been widely demonstrated that fash boiling spray can generate shorter and wider spray with improved atomization and evaporation to promote a better air-fuel mixing process.In this study,macroscopic(far-field)spray morphologies and primary breakup(near-field)characteristics of a two-hole gasoline direct injection injector are investigated under non-flash boiling and flash boiling conditions.High speed macroscopic and microscopic imaging was used to capture the overall spray structure and near-field characteristics,respectively.N-Hexane is used as the test fuel with the injection pressure ranging from 10 MPa up to 40 MPa.For sub-cooled liquid fuel sprays,increasing fuel pressure contributes to enhanced fuel atomization and evaporation.Evident collapses occurred under fare flash boiling conditions,and higher injection pressure weakened this phenomenon since the spray cone angle decreased due to a higher injection velocity.