Researchers seldom study optimum design of a six-degree-of-freedom(DOF) parallel manipulator with three legs based upon the given workspace.An optimal design method of a novel three-leg six-DOF parallel manipulator...Researchers seldom study optimum design of a six-degree-of-freedom(DOF) parallel manipulator with three legs based upon the given workspace.An optimal design method of a novel three-leg six-DOF parallel manipulator(TLPM) is presented.The mechanical structure of this robot is introduced,with this structure the kinematic constrain equations is decoupled.Analytical solutions of the forward kinematics are worked out,one configuration of this robot,including position and orientation of the end-effector are graphically displayed.Then,on the basis of several extreme positions of the kinematic performances,the task workspace is given.An algorithm of optimal designing is introduced to find the smallest dimensional parameters of the proposed robot.Examples illustrate the design results,and a design stability index is introduced,which ensures that the robot remains a safe distance from the boundary of sits actual workspace.Finally,one prototype of the robot is developed based on this method.This method can easily find appropriate kinematic parameters that can size a robot having the smallest workspace enclosing a predefined task workspace.It improves the design efficiency,ensures that the robot has a small mechanical size possesses a large given workspace volume,and meets the lightweight design requirements.展开更多
The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Co...The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Consequently,the single-core processor cannot meet the requirements of LTE system.This paper analyzes how to use multi-core processors to achieve parallel processing of uplink demodulation and decoding in LTE systems and designs an approach to parallel processing.The test results prove that this approach works quite well.展开更多
In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal sys...In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
Due to current technology enhancement,molecular databases have exponentially grown requesting faster efficient methods that can handle these amounts of huge data.There-fore,Multi-processing CPUs technology can be used...Due to current technology enhancement,molecular databases have exponentially grown requesting faster efficient methods that can handle these amounts of huge data.There-fore,Multi-processing CPUs technology can be used including physical and logical processors(Hyper Threading)to significantly increase the performance of computations.Accordingly,sequence comparison and pairwise alignment were both found contributing significantly in calculating the resemblance between sequences for constructing optimal alignments.This research used the Hash Table-NGram-Hirschberg(HT-NGH)algo-rithm to represent this pairwise alignment utilizing hashing capabilities.The authors propose using parallel shared memory architecture via Hyper Threading to improve the performance of molecular dataset protein pairwise alignment.The proposed parallel hyper threading method targeted the transformation of the HT-NGH on the datasets decomposition for sequence level efficient utilization within the processing units,that is,reducing idle processing unit situations.The authors combined hyper threading within the multicore architecture processing on shared memory utilization remarking perfor-mance of 24.8%average speed up to 34.4%as the highest boosting rate.The benefit of this work improvement is shown preserving acceptable accuracy,that is,reaching 2.08,2.88,and 3.87 boost-up as well as the efficiency of 1.04,0.96,and 0.97,using 2,3,and 4 cores,respectively,as attractive remarkable results.展开更多
A new method for the comparison of the treatment efficacy for specific diseases or conditions between Chinese medicine and Western medicine, which serve the same medical aim but are based on substantially different th...A new method for the comparison of the treatment efficacy for specific diseases or conditions between Chinese medicine and Western medicine, which serve the same medical aim but are based on substantially different theoretical systems, was identified. Abiding by the principle of parallel subgroup design of a randomized controlled trial (PSD-RCT), participants were recruited following identical inclusion and exclusion criteria and were randomly allocated into two groups to receive treatment using the respective approaches of Chinese medicine and Western medicine. The Chinese medicine group was divided into subgroups according to the theory of Chinese medicine and the Western medicine group was also divided into subgroups according to the theory of Western medicine. The treatment for each subgroup was well defined in the protocol, including major formulae and principles for individualized modifications. The primary outcome measure was ascertained to be directly related to the patients' status but independent from both theories of Chinese medicine and Western medicine, while the secondary outcomes were represented by the patient-reported outcomes and some laboratory tests commonly accepted by Chinese medicine and Western medicine. Then, taking functional dyspepsia as an example, the authors explain the framework of the PSD-RCT for efficacy comparisons between Chinese medicine and Western medicine, and recommend that the PSD-RCT can be used to compare treatment efficacy for a specific disease or condition between Chinese medicine and Western medicine, and the comparison among subgroups can provide valuable clues for further studies.展开更多
A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and...A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.展开更多
In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by...In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by using a modular arithmetic logic unit (MALU). The MALU consists of two multiplications, one addition, and one squaring. The two multiplications and the addition or squaring can be computed in parallel. The whole computations of scalar multiplication over GF(2^163) can be performed in 3 064 cycles. The simulation results based on Xilinx Virtex2 XC2V6000 FPGAs show that the proposed design can compute random GF(2^163) elliptic curve scalar multiplication operations in 31.17 μs, and the resource occupies 3 994 registers and 15 527 LUTs, which indicates that the crypto-processor is suitable for high-performance application.展开更多
By studying the core algorithm of a three-dimensional discrete wavelet transform(3-D DWT)in depth,this paper divides it into three one-dimensional discrete wavelet transforms(1-D DWTs).Based on the implementation of a...By studying the core algorithm of a three-dimensional discrete wavelet transform(3-D DWT)in depth,this paper divides it into three one-dimensional discrete wavelet transforms(1-D DWTs).Based on the implementation of a 3-D DWT software,a parallel architecture design of a very large-scale integration(VLSI)is produced.It needs three dual-port random-access memory(RAM)to store the temporary results and transpose the matrix,then builds up a pipeline model composed of the three 1-D DWTs.In the design,the finite state machine(FSM)is used well to control the flow.Compared with the serial mode,the experimental results of the post synthesized simulation show that the design method is correct and effective.It can increase the processing speed by about 66%,work at 59 MHz,and meet the real-time needs of the video encoder.展开更多
The GAMMA paradigm is recently proposed by Banatre and M6tayer to describe the systematic construction of parallel programs without introducing artificial sequentiality. This paper presents two synchronous execution m...The GAMMA paradigm is recently proposed by Banatre and M6tayer to describe the systematic construction of parallel programs without introducing artificial sequentiality. This paper presents two synchronous execution models for GAMMA and discusses how to implement them on MasPar MP-1, a massively data parallel computer. The results show that GAMMA paradigm can be implemented very naturally on data parallel machines, and very high level language, such as GAMMA in which parallelism is left implicit, is suitable for specifying massively parallel applications.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)
文摘Researchers seldom study optimum design of a six-degree-of-freedom(DOF) parallel manipulator with three legs based upon the given workspace.An optimal design method of a novel three-leg six-DOF parallel manipulator(TLPM) is presented.The mechanical structure of this robot is introduced,with this structure the kinematic constrain equations is decoupled.Analytical solutions of the forward kinematics are worked out,one configuration of this robot,including position and orientation of the end-effector are graphically displayed.Then,on the basis of several extreme positions of the kinematic performances,the task workspace is given.An algorithm of optimal designing is introduced to find the smallest dimensional parameters of the proposed robot.Examples illustrate the design results,and a design stability index is introduced,which ensures that the robot remains a safe distance from the boundary of sits actual workspace.Finally,one prototype of the robot is developed based on this method.This method can easily find appropriate kinematic parameters that can size a robot having the smallest workspace enclosing a predefined task workspace.It improves the design efficiency,ensures that the robot has a small mechanical size possesses a large given workspace volume,and meets the lightweight design requirements.
文摘The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Consequently,the single-core processor cannot meet the requirements of LTE system.This paper analyzes how to use multi-core processors to achieve parallel processing of uplink demodulation and decoding in LTE systems and designs an approach to parallel processing.The test results prove that this approach works quite well.
基金ESPRIT Basic Research ProCoS project 3104 and 7071
文摘In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
基金Deanship of Scientific Research(DSR),King Abdulaziz University,Grant/Award Number:D-139-137-1441。
文摘Due to current technology enhancement,molecular databases have exponentially grown requesting faster efficient methods that can handle these amounts of huge data.There-fore,Multi-processing CPUs technology can be used including physical and logical processors(Hyper Threading)to significantly increase the performance of computations.Accordingly,sequence comparison and pairwise alignment were both found contributing significantly in calculating the resemblance between sequences for constructing optimal alignments.This research used the Hash Table-NGram-Hirschberg(HT-NGH)algo-rithm to represent this pairwise alignment utilizing hashing capabilities.The authors propose using parallel shared memory architecture via Hyper Threading to improve the performance of molecular dataset protein pairwise alignment.The proposed parallel hyper threading method targeted the transformation of the HT-NGH on the datasets decomposition for sequence level efficient utilization within the processing units,that is,reducing idle processing unit situations.The authors combined hyper threading within the multicore architecture processing on shared memory utilization remarking perfor-mance of 24.8%average speed up to 34.4%as the highest boosting rate.The benefit of this work improvement is shown preserving acceptable accuracy,that is,reaching 2.08,2.88,and 3.87 boost-up as well as the efficiency of 1.04,0.96,and 0.97,using 2,3,and 4 cores,respectively,as attractive remarkable results.
文摘A new method for the comparison of the treatment efficacy for specific diseases or conditions between Chinese medicine and Western medicine, which serve the same medical aim but are based on substantially different theoretical systems, was identified. Abiding by the principle of parallel subgroup design of a randomized controlled trial (PSD-RCT), participants were recruited following identical inclusion and exclusion criteria and were randomly allocated into two groups to receive treatment using the respective approaches of Chinese medicine and Western medicine. The Chinese medicine group was divided into subgroups according to the theory of Chinese medicine and the Western medicine group was also divided into subgroups according to the theory of Western medicine. The treatment for each subgroup was well defined in the protocol, including major formulae and principles for individualized modifications. The primary outcome measure was ascertained to be directly related to the patients' status but independent from both theories of Chinese medicine and Western medicine, while the secondary outcomes were represented by the patient-reported outcomes and some laboratory tests commonly accepted by Chinese medicine and Western medicine. Then, taking functional dyspepsia as an example, the authors explain the framework of the PSD-RCT for efficacy comparisons between Chinese medicine and Western medicine, and recommend that the PSD-RCT can be used to compare treatment efficacy for a specific disease or condition between Chinese medicine and Western medicine, and the comparison among subgroups can provide valuable clues for further studies.
文摘A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.
基金supported by the Hi-Tech Research and Development Program of China(2006AA01Z226)the Research Foundation of Huazhong University of Science and Technology(2006Z001B)
文摘In this article, a parallel hardware processor is presented to compute elliptic curve scalar multiplication in polynomial basis representation. The processor is applicable to the operations of scalar multiplication by using a modular arithmetic logic unit (MALU). The MALU consists of two multiplications, one addition, and one squaring. The two multiplications and the addition or squaring can be computed in parallel. The whole computations of scalar multiplication over GF(2^163) can be performed in 3 064 cycles. The simulation results based on Xilinx Virtex2 XC2V6000 FPGAs show that the proposed design can compute random GF(2^163) elliptic curve scalar multiplication operations in 31.17 μs, and the resource occupies 3 994 registers and 15 527 LUTs, which indicates that the crypto-processor is suitable for high-performance application.
基金supported by the Defense Advanced Research Projects under Contract(No.41308010408).
文摘By studying the core algorithm of a three-dimensional discrete wavelet transform(3-D DWT)in depth,this paper divides it into three one-dimensional discrete wavelet transforms(1-D DWTs).Based on the implementation of a 3-D DWT software,a parallel architecture design of a very large-scale integration(VLSI)is produced.It needs three dual-port random-access memory(RAM)to store the temporary results and transpose the matrix,then builds up a pipeline model composed of the three 1-D DWTs.In the design,the finite state machine(FSM)is used well to control the flow.Compared with the serial mode,the experimental results of the post synthesized simulation show that the design method is correct and effective.It can increase the processing speed by about 66%,work at 59 MHz,and meet the real-time needs of the video encoder.
文摘The GAMMA paradigm is recently proposed by Banatre and M6tayer to describe the systematic construction of parallel programs without introducing artificial sequentiality. This paper presents two synchronous execution models for GAMMA and discusses how to implement them on MasPar MP-1, a massively data parallel computer. The results show that GAMMA paradigm can be implemented very naturally on data parallel machines, and very high level language, such as GAMMA in which parallelism is left implicit, is suitable for specifying massively parallel applications.