期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Parallel Particle Swarm Optimization Algorithm Based on Dynamic Exchange of Control Parameters
1
作者 Masaaki Suzuki 《American Journal of Operations Research》 2016年第5期401-413,共14页
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s... Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance. 展开更多
关键词 Swarm Intelligence Particle Swarm Optimization Global Optimization Metaheuristics adaptive parameter tuning
下载PDF
Adaptive connected hierarchical optimization algorithm for minimum energy spacecraft attitude maneuver path planning
2
作者 Hanqing He Peng Shi Yushan Zhao 《Astrodynamics》 EI CSCD 2023年第2期197-209,共13页
Space object observation requirements and the avoidance of specific attitudes produce pointing constraints that increase the complexity of the attitude maneuver path-planning problem.To deal with this issue,a feasible... Space object observation requirements and the avoidance of specific attitudes produce pointing constraints that increase the complexity of the attitude maneuver path-planning problem.To deal with this issue,a feasible attitude trajectory generation method is proposed that utilizes a multiresolution technique and local attitude node adjustment to obtain sufficient time and quaternion nodes to satisfy the pointing constraints.These nodes are further used to calculate the continuous attitude trajectory based on quaternion polynomial interpolation and the inverse dynamics method.Then,the characteristic parameters of these nodes are extracted to transform the path-planning problem into a parameter optimization problem aimed at minimizing energy consumption.This problem is solved by an improved hierarchical optimization algorithm,in which an adaptive parameter-tuning mechanism is introduced to improve the performance of the original algorithm.A numerical simulation is performed,and the results confirm the feasibility and effectiveness of the proposed method. 展开更多
关键词 hierarchical optimization algorithm(HOA) adaptive parameters tuning attitude control minimum energy control pointing constraint
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部