Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to ...Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization.展开更多
In order to eliminate chaotic oscillation of electromechanical characteristics of seismograph system, the complex dynamic the four-dimensional nonlinear equations of seismograph system were analyzed. Sliding mode meth...In order to eliminate chaotic oscillation of electromechanical characteristics of seismograph system, the complex dynamic the four-dimensional nonlinear equations of seismograph system were analyzed. Sliding mode method was applied to stabilize the chaotic orbits of the eleetromechanieal seismograph system to arbitrary chosen fixed points and periodic orbits precisely, and MATLAB simulations were presented to confirm the validity of the controller. The results show that using sliding mode method can make the system track target orbit strictly and smoothly with short transition time, and its insensitivity to noise disturbances is shown. It also provides reference for relevant chaos control in relevant system.展开更多
Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-lay...Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held ...Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held constant at 35 mm and then at 70 mm while speed was varied at three levels of 1.0, 3.6 and 9.0 km/h. The widths of the tines tested were 10, 20, 31, 40, 51, 88, 126, 163 and 200 mm. The cone penetration resistance of the soil varied from 400 to 600 kPa. Draught was measured with a load cell while soil disturbance was measured with a profile meter and meter rule. Draught increased at a decreasing rate with tine width. Quadratic models best fitted the data points with high R2 values. The increase in draught was affected by the forward speed since higher draught values were obtained at higher speed. Results show that the parameters of soil disturbance increased with increase in tine width, except height of ridge (hr), which did not show any specific trend. The specific draught was highest (10.63 N/cm) with tine T20 while Tine T1 had the least specific draught of 5.2 N/cm.展开更多
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma...A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license展开更多
Based on prior investigation,this work defined a new thermodynamic shear advection parameter,which combines the vertical component of convective vorticity vector,horizontal divergence,and vertical gradient of generali...Based on prior investigation,this work defined a new thermodynamic shear advection parameter,which combines the vertical component of convective vorticity vector,horizontal divergence,and vertical gradient of generalized potential temperature.The interaction between waves and fundamental states was computed for the heavyrainfall event generated by landfalling typhoon“Morakot”.The analysis data was produced by ADAS[ARPS(Advanced Regional Prediction System)Data Analysis System]combined with the NCEP/NCAR final analysis data(1°×1°,26 vertical pressure levels and 6-hour interval)with the routine observations of surface and sounding.Because it may describe the typical vertical structure of dynamical and thermodynamic fields,the result indicates that the parameter is intimately related to precipitation systems.The parameter’s positive high-value area closely matches the reported 6-hour accumulated surface rainfall.And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009.This implies that the parameter can predict and indicate the rainfall area,as well as the initiation and evolution of precipitation systems.展开更多
Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both...Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both the extended state observer(ESO) and the reduced order extended state observer(RESO) are used to estimate and compensate for the disturbance.The authors prove that both approaches ensure high accuracy in theory,and give the criterion for parameters selection.The authors also prove that ADRC with RESO performs better than that with ESO both in disturbance estimation and tracking error.The simulation results on CNC machine show the effectiveness and feasibility of our control approaches.展开更多
文摘Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization.
基金the Independent Research Project of State Key Laboratory of Power Transmission Equipment & System Security and New Technology,China ( No. 2007DA10512711205)
文摘In order to eliminate chaotic oscillation of electromechanical characteristics of seismograph system, the complex dynamic the four-dimensional nonlinear equations of seismograph system were analyzed. Sliding mode method was applied to stabilize the chaotic orbits of the eleetromechanieal seismograph system to arbitrary chosen fixed points and periodic orbits precisely, and MATLAB simulations were presented to confirm the validity of the controller. The results show that using sliding mode method can make the system track target orbit strictly and smoothly with short transition time, and its insensitivity to noise disturbances is shown. It also provides reference for relevant chaos control in relevant system.
文摘Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.
文摘Experiments were conducted in an indoor soil bin filled with sandy clay loam soil. Tests were carried out with tillage tines to study the effect tool width on soil disturbance and draught. Depth of operation was held constant at 35 mm and then at 70 mm while speed was varied at three levels of 1.0, 3.6 and 9.0 km/h. The widths of the tines tested were 10, 20, 31, 40, 51, 88, 126, 163 and 200 mm. The cone penetration resistance of the soil varied from 400 to 600 kPa. Draught was measured with a load cell while soil disturbance was measured with a profile meter and meter rule. Draught increased at a decreasing rate with tine width. Quadratic models best fitted the data points with high R2 values. The increase in draught was affected by the forward speed since higher draught values were obtained at higher speed. Results show that the parameters of soil disturbance increased with increase in tine width, except height of ridge (hr), which did not show any specific trend. The specific draught was highest (10.63 N/cm) with tine T20 while Tine T1 had the least specific draught of 5.2 N/cm.
文摘A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license
基金National Key R&D Program of China(2017YFC1501604)Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(SCSF202101)+1 种基金Open Grants of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(41405049)。
文摘Based on prior investigation,this work defined a new thermodynamic shear advection parameter,which combines the vertical component of convective vorticity vector,horizontal divergence,and vertical gradient of generalized potential temperature.The interaction between waves and fundamental states was computed for the heavyrainfall event generated by landfalling typhoon“Morakot”.The analysis data was produced by ADAS[ARPS(Advanced Regional Prediction System)Data Analysis System]combined with the NCEP/NCAR final analysis data(1°×1°,26 vertical pressure levels and 6-hour interval)with the routine observations of surface and sounding.Because it may describe the typical vertical structure of dynamical and thermodynamic fields,the result indicates that the parameter is intimately related to precipitation systems.The parameter’s positive high-value area closely matches the reported 6-hour accumulated surface rainfall.And the statistical analysis reveals a certain correspondence between the thermodynamic shear advection parameter and the observed 6-hour accumulated surface rainfall in the summer of 2009.This implies that the parameter can predict and indicate the rainfall area,as well as the initiation and evolution of precipitation systems.
基金partially supported by the National Key Basic Research Project of China under Grant No.2011CB302400the National Basic Research Program of China under Grant No.2014CB845303the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences
文摘Uncertain friction is a key factor that influences the accuracy of servo system in CNC machine.In this paper,based on the principle of Active Disturbance Rejection Control(ADRC),a control method is proposed,where both the extended state observer(ESO) and the reduced order extended state observer(RESO) are used to estimate and compensate for the disturbance.The authors prove that both approaches ensure high accuracy in theory,and give the criterion for parameters selection.The authors also prove that ADRC with RESO performs better than that with ESO both in disturbance estimation and tracking error.The simulation results on CNC machine show the effectiveness and feasibility of our control approaches.