Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impeda...Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent paramet...The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent parameters are computed by employing the moment method. The numerical results of resonant length of the feeding slot, VSWR and coupling parameter are showed and compared with the case of no radiating slots and short-end. The agreement between theory and experiment is good.展开更多
Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious m...Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.展开更多
The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominat...The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.展开更多
A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequ...A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.展开更多
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui...Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.展开更多
Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential e...Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.展开更多
The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the ...The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the electrode on the EQCIS responses were evaluated, showing the highest response sensitivity to liquid loading at the center of the piezoelectric quartz crystal electrode. The increase in the immersed height of the Au electrode at oxygen reduction potentials during potential cycling was measured by this technique.展开更多
Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the mo...Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the model,coupling solving process of energy balance equations is omitted and the model zone is real closed.Meanwhile,the full furnace temperature and heat flow calculations are avoided,which makes it easier to find the relationship between the equivalent gray gas radiation characteristic parameter and the initial conditions.The radiation characteristic parameter was calculated with different temperature combinations,different model zone sizes and different partial pressures of absorbent gas.The results show the similar variations in the absorption coefficient and emissivity for the equivalent gray model,which both decrease with the increase of the gas temperature and the surface temperature(especially the former one)as well as the model zone size while increase with the increase of the partial pressure of absorbent gas.展开更多
Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach ...Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach number.Usually a standing window of ODW is defined as the wedge angle ranged from the ODW detached angle from wedge(upper limit)to the angle that a Chapman-Jouguet(CJ)detonation occurs(lower limit).For pathological detonation cases,however,the CJ detonation cannot be achieved,and thus the lower limit of the standing window of ODW should be revisited.In present study,two types of reactions in hypersonic incoming flow that include the behavior of pathological detonation,that is,the single-step irreversible reaction with mole variation and the two-step irreversible reactions with exothermic process followed by endothermic process,have been used for studying standing behavior of ODW.The steady detonation polar analysis of ODW is carried out for both reaction systems.The results reveal that the reaction with more mole decrement and the reactions with stronger endothermic process show the pathological detonation feature and therefore modify the lower limit of standing window of ODW.Three equivalent parameters are proposed to quantitatively measure the standing window range of ODW from points of view of thermodynamics,Mach number of incoming flow and heat effect of reactions.It is found that the standing window of ODW is determined by the specific heat ratio,the overdrive degree of detonation and the endothermic level of the hypersonic incoming flow,regardless of whether the detonation is pathological or not.展开更多
We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary...We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary electrophoresis(I.D.50μm,O.D. 360μm,electrode length of 4 mm,electrode gap of 1 mm,frequency of 200 kHz),the values of C_w measured in 1 and 20 mmol/L NaCl solutions are 2.8 and 32 fF,which are only 1.1%and 12%of prediction by the equation in references,respectively.The value of R_S is less than the prediction in solutions withκ〈0.02 S/m.The response current of C^4D is due to the change in C_w because the total impedance of a C^4D is composed mainly by the impedance from C_w.展开更多
The campontely structured inductive waveguide elements are analyzed by making use ofthe equivalent source method in this paper The number and cross section of the inductive posts are arbi-trary, and they are of rither...The campontely structured inductive waveguide elements are analyzed by making use ofthe equivalent source method in this paper The number and cross section of the inductive posts are arbi-trary, and they are of rither pure metallic or pure dielectric lype , or composed of both metallic and di-electric ones. A number of inductive waveguide elements are numerically analyzed and a good agree-ment is achieved in comiparison with the measured data or results available in published literalures.展开更多
This paper develops a new combined network equilibrium model by using more behaviorally sound mathematical forms to represent the four travel choices(i.e., trip frequency,destination, mode, and route) in a conventio...This paper develops a new combined network equilibrium model by using more behaviorally sound mathematical forms to represent the four travel choices(i.e., trip frequency,destination, mode, and route) in a conventional travel demand forecasting process. Trip frequency choice relates to the traveler decision on “making a trip” or “not making a trip”so it is given by a binary logit model. Destination choice is formulated as a parameterized dogit model of which the captivity parameters(expressed as functions of independent variables) allow individual travelers to be captive to specific destinations. Mode choice is given by a two-level nested logit model to avoid IIA restriction. Trip assignment is based on Wardrop's “user-optimized” principle. All model forms describing travel choices are in response to the level of services incurred by the transportation system. Through the introduction of inclusive values, the traveler decisions concerning trip frequency, destination, mode, and route choices are inherently interrelated and jointly determined.To obtain solutions of the new combined model, it was reformulated as an equivalent convex programming problem with linear constraints, a great advantage from the computational aspects. The model was applied empirically to a transportation network in New Jersey. The application results show that the new model is consistently better than the commonly used logit combined model in reproducing the observed trip flows from origin zones, origin to destination(O-D) trip flows, O-D trip flows by mode, and trip flows on the network links.展开更多
文摘Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
文摘The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent parameters are computed by employing the moment method. The numerical results of resonant length of the feeding slot, VSWR and coupling parameter are showed and compared with the case of no radiating slots and short-end. The agreement between theory and experiment is good.
基金The study is financially supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(Grant No.51627812)the National Natural Science Foundation of China(Grant No.52078181)the Natural Science Foundation of Hebei Province,China(Grant No.E2019202484)。
文摘Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.
基金supported by the National Natural Science Foundation of China(No.51777035).
文摘The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.
文摘A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction.
基金Project(2015M580702)supported by China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.
文摘Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.
基金This work was supported by the National Natural Science Foundation of China the Science and Technology Foundation of Hunan P
文摘The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the electrode on the EQCIS responses were evaluated, showing the highest response sensitivity to liquid loading at the center of the piezoelectric quartz crystal electrode. The increase in the immersed height of the Au electrode at oxygen reduction potentials during potential cycling was measured by this technique.
基金Sponsored by National Science and Technology Support Plan of China(2011AA060104)
文摘Compared with non-gray model,equivalent gray model has equal calculation accuracy but much higher computing speed.To solve the existing problems of the equivalent gray method,sole ternary model was developed.In the model,coupling solving process of energy balance equations is omitted and the model zone is real closed.Meanwhile,the full furnace temperature and heat flow calculations are avoided,which makes it easier to find the relationship between the equivalent gray gas radiation characteristic parameter and the initial conditions.The radiation characteristic parameter was calculated with different temperature combinations,different model zone sizes and different partial pressures of absorbent gas.The results show the similar variations in the absorption coefficient and emissivity for the equivalent gray model,which both decrease with the increase of the gas temperature and the surface temperature(especially the former one)as well as the model zone size while increase with the increase of the partial pressure of absorbent gas.
基金co-supported by the National Natural Science Foundation of China(No.11872213)the Open Fund of Key Laboratory of Transient Physics,NJUST(No.6142604180205)the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ17-11M)。
文摘Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach number.Usually a standing window of ODW is defined as the wedge angle ranged from the ODW detached angle from wedge(upper limit)to the angle that a Chapman-Jouguet(CJ)detonation occurs(lower limit).For pathological detonation cases,however,the CJ detonation cannot be achieved,and thus the lower limit of the standing window of ODW should be revisited.In present study,two types of reactions in hypersonic incoming flow that include the behavior of pathological detonation,that is,the single-step irreversible reaction with mole variation and the two-step irreversible reactions with exothermic process followed by endothermic process,have been used for studying standing behavior of ODW.The steady detonation polar analysis of ODW is carried out for both reaction systems.The results reveal that the reaction with more mole decrement and the reactions with stronger endothermic process show the pathological detonation feature and therefore modify the lower limit of standing window of ODW.Three equivalent parameters are proposed to quantitatively measure the standing window range of ODW from points of view of thermodynamics,Mach number of incoming flow and heat effect of reactions.It is found that the standing window of ODW is determined by the specific heat ratio,the overdrive degree of detonation and the endothermic level of the hypersonic incoming flow,regardless of whether the detonation is pathological or not.
基金supported by the National Natural Science Foundation of China(nos.20975062 and 21175084)
文摘We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary electrophoresis(I.D.50μm,O.D. 360μm,electrode length of 4 mm,electrode gap of 1 mm,frequency of 200 kHz),the values of C_w measured in 1 and 20 mmol/L NaCl solutions are 2.8 and 32 fF,which are only 1.1%and 12%of prediction by the equation in references,respectively.The value of R_S is less than the prediction in solutions withκ〈0.02 S/m.The response current of C^4D is due to the change in C_w because the total impedance of a C^4D is composed mainly by the impedance from C_w.
文摘The campontely structured inductive waveguide elements are analyzed by making use ofthe equivalent source method in this paper The number and cross section of the inductive posts are arbi-trary, and they are of rither pure metallic or pure dielectric lype , or composed of both metallic and di-electric ones. A number of inductive waveguide elements are numerically analyzed and a good agree-ment is achieved in comiparison with the measured data or results available in published literalures.
文摘This paper develops a new combined network equilibrium model by using more behaviorally sound mathematical forms to represent the four travel choices(i.e., trip frequency,destination, mode, and route) in a conventional travel demand forecasting process. Trip frequency choice relates to the traveler decision on “making a trip” or “not making a trip”so it is given by a binary logit model. Destination choice is formulated as a parameterized dogit model of which the captivity parameters(expressed as functions of independent variables) allow individual travelers to be captive to specific destinations. Mode choice is given by a two-level nested logit model to avoid IIA restriction. Trip assignment is based on Wardrop's “user-optimized” principle. All model forms describing travel choices are in response to the level of services incurred by the transportation system. Through the introduction of inclusive values, the traveler decisions concerning trip frequency, destination, mode, and route choices are inherently interrelated and jointly determined.To obtain solutions of the new combined model, it was reformulated as an equivalent convex programming problem with linear constraints, a great advantage from the computational aspects. The model was applied empirically to a transportation network in New Jersey. The application results show that the new model is consistently better than the commonly used logit combined model in reproducing the observed trip flows from origin zones, origin to destination(O-D) trip flows, O-D trip flows by mode, and trip flows on the network links.