The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless ...Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless scalar fields in n-dimensional spacetime,and analyzed the behavior of QFI with various parameters,such as the dimension of spacetime,evolution time,and Unruh temperature.We discovered that the QFI of state parameter decreases monotonically from 1 to 0 over time.Additionally,we noted that the QFI for small evolution times is several orders of magnitude higher than the QFI for long evolution times.We also found that the value of QFI decreases at first and then stabilizes as the Unruh temperature increases.It was observed that the QFI depends on initial state parameterθ,and Fθis the maximum forθ=0 orθ=π,Fφis the maximum forθ=π/2.We also obtain that the maximum value of QFI for state parameters varies for different spacetime dimensions with the same evolution time.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solut...The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks.By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing,a multifrequency signal estimation approach based on HT-IpDFT-STWLS(HIpST)for distribution networks is provided.First,by introducing the Hilbert transform(HT),the influence of noise on the estimation algorithm is reduced.Second,signal frequency components are obtained on the basis of the calculated signal envelope spectrum,and the interpolated discrete Fourier transform(IpDFT)frequency coarse estimation results are used as the initial values of symmetric Taylor weighted least squares(STWLS)to achieve high-precision parameter estimation under the dynamic changes of the signal,and the method increases the number of discrete Fourier.Third,the accuracy of this proposed method is verified by simulation analysis.Data show that this proposed method can accurately achieve the parameter estimation of multifrequency signals in distribution networks.This approach provides a solution for the application of phasor measurement units in distribution networks.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the ...This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the least-squares method to design an adaptive law for parameter estimation. The convergence analysis demonstrates that under persistent excitation conditions, the adaptive law converges exponentially to zero, indicating that the estimated parameters converge exponentially to their true values. Numerical simulations confirm the effectiveness. Furthermore, it is shown that within a certain range of the reaction coefficient, the auxiliary system acts as a state observer, providing an accurate estimate of the system state at an exponential rate. .展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to es...We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.展开更多
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed...An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.展开更多
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima...Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.展开更多
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ...By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.展开更多
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydrauli...A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.展开更多
The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the ti...The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.展开更多
Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),...Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the ″geometric″ roughness of random surface.This ″geometric″ roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between ″geometric″ roughness and integrated roughness (contain both ″geometric″ roughness and ″dielectric″ roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of ″dielectric″ roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the ″geometric″ roughness.展开更多
We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. U...We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal.展开更多
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T...A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics...Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.展开更多
The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary mod...The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary model identification idea, the multiinnovation stochastic gradient algorithm is developed to estimate the parameters of multirate systems. Finally, an illustrative example is given to verify the effectiveness of the proposed algorithm.展开更多
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12105097 and 12035005)the Science Research Fund of the Education Department of Hunan Province,China(Grant No.23B0480).
文摘Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless scalar fields in n-dimensional spacetime,and analyzed the behavior of QFI with various parameters,such as the dimension of spacetime,evolution time,and Unruh temperature.We discovered that the QFI of state parameter decreases monotonically from 1 to 0 over time.Additionally,we noted that the QFI for small evolution times is several orders of magnitude higher than the QFI for long evolution times.We also found that the value of QFI decreases at first and then stabilizes as the Unruh temperature increases.It was observed that the QFI depends on initial state parameterθ,and Fθis the maximum forθ=0 orθ=π,Fφis the maximum forθ=π/2.We also obtain that the maximum value of QFI for state parameters varies for different spacetime dimensions with the same evolution time.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金supported by the State Grid Corporation of China Headquarters Management Science and Technology Project(No.526620200008).
文摘The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks.By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing,a multifrequency signal estimation approach based on HT-IpDFT-STWLS(HIpST)for distribution networks is provided.First,by introducing the Hilbert transform(HT),the influence of noise on the estimation algorithm is reduced.Second,signal frequency components are obtained on the basis of the calculated signal envelope spectrum,and the interpolated discrete Fourier transform(IpDFT)frequency coarse estimation results are used as the initial values of symmetric Taylor weighted least squares(STWLS)to achieve high-precision parameter estimation under the dynamic changes of the signal,and the method increases the number of discrete Fourier.Third,the accuracy of this proposed method is verified by simulation analysis.Data show that this proposed method can accurately achieve the parameter estimation of multifrequency signals in distribution networks.This approach provides a solution for the application of phasor measurement units in distribution networks.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the least-squares method to design an adaptive law for parameter estimation. The convergence analysis demonstrates that under persistent excitation conditions, the adaptive law converges exponentially to zero, indicating that the estimated parameters converge exponentially to their true values. Numerical simulations confirm the effectiveness. Furthermore, it is shown that within a certain range of the reaction coefficient, the auxiliary system acts as a state observer, providing an accurate estimate of the system state at an exponential rate. .
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60473042,60573067 and 60803102)
文摘We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
基金supported by the National Natural Science Foundation of China (61304254)the National Science Foundation for Distinguished Young Scholars of China (60925011)the Provincial and Ministerial Key Fund of China (9140A07010511BQ0105)
文摘An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61302188)the Nanjing University of Science and Technology Research Foundation (2010ZDJH05)
文摘Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.
基金supported by the National Natural Science Foundation of China(6120113461201135)+2 种基金the 111 Project(B08038)the Fundamental Research Funds for the Central Universities(72124669)the Open Research Fund of the Academy of Application(2014CXJJ-TX06)
文摘By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.
基金Project(2003AA430200) supported by the National High-Tech Research and Development Program of China
文摘A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system,taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve,the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load,and it approximates to 2.0 MPa. And then,assume the flow across the valve is directly proportional to spool displacement and is not influenced by load,a simplified model of electro-hydraulic system was put forward. At the same time,by analyzing the structure and load-bearing of boom instrument,and combining moment equivalent equation of manipulator with rotating law,the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally,the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve,the flow gain coefficient of valve is identified as 2.825×10-4 m3/(s·A) and the model is verified.
基金supported by the National Natural Science Foundation of China (60872003 61071214)+1 种基金the Doctoral Fund of Ministry of Education of China (20093201110005)the Foundation of Chinese National Defense Technology Key Laboratory (9140C1301031001)
文摘The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)
文摘Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the ″geometric″ roughness of random surface.This ″geometric″ roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between ″geometric″ roughness and integrated roughness (contain both ″geometric″ roughness and ″dielectric″ roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of ″dielectric″ roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the ″geometric″ roughness.
基金supported by FAU Start-up funding at the C. E. Schmidt Collegeof Science
文摘We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal.
文摘A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
基金supported by the National Defence Pre-research Foundation of China(30502010103).
文摘Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.
基金supported by the National Natural Science Foundation of China (60973043)
文摘The multirate multi-input systems have different updating periods and sampling periods such that the conventional identification algorithms cannot be used to identify such multirate systems. By using the auxiliary model identification idea, the multiinnovation stochastic gradient algorithm is developed to estimate the parameters of multirate systems. Finally, an illustrative example is given to verify the effectiveness of the proposed algorithm.