Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single...Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.展开更多
针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失...针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。展开更多
基金supported by the National Science Foundation of China(61472289)National Key Research and Development Project(2016YFC0106305)The Key Technology R&D Program of Hubei Provence(2014BAA153)
文摘Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.
文摘针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。