Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnific...Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnification factors of fluctuating internal pressures were analyzed using 96 model cases under random fluctuating external pressure,and then corresponding design equations were fitted.The results show that the Helmholtz resonance peaks of the admittance functions in both compartments increase with increasing the area of windward or partition wall opening.With increasing the volume of the compartment with an external opening,the resonance peak in this compartment at the higher Helmholtz frequency significantly decreases,at the same time,the resonance peak in the other compartment at the lower Helmholtz frequency also decreases.With increasing the volume of the compartment with background porosity,both resonance peaks in this compartment at the lower and higher Helmholtz frequencies decrease,meanwhile,the resonance peak at the lower Helmholtz frequency for the other compartment also decreases,whereas the resonance peak at the higher Helmholtz frequency increases.Both resonance peaks of the admittance functions in the two compartments decrease with increasing the amplitude of fluctuating external pressure coefficients or reference wind speed.展开更多
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t...A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.展开更多
基金Projects(51278367,50878159)supported by the National Natural Science Foundation of ChinaProject(90715040)supported by the Major Research Program of National Natural Science Foundation of China
文摘Analyses of the effects of some parameters were performed to determine the admittance functions in a common two-compartment building with background porosity by the imposed excitation method.Variations of the magnification factors of fluctuating internal pressures were analyzed using 96 model cases under random fluctuating external pressure,and then corresponding design equations were fitted.The results show that the Helmholtz resonance peaks of the admittance functions in both compartments increase with increasing the area of windward or partition wall opening.With increasing the volume of the compartment with an external opening,the resonance peak in this compartment at the higher Helmholtz frequency significantly decreases,at the same time,the resonance peak in the other compartment at the lower Helmholtz frequency also decreases.With increasing the volume of the compartment with background porosity,both resonance peaks in this compartment at the lower and higher Helmholtz frequencies decrease,meanwhile,the resonance peak at the lower Helmholtz frequency for the other compartment also decreases,whereas the resonance peak at the higher Helmholtz frequency increases.Both resonance peaks of the admittance functions in the two compartments decrease with increasing the amplitude of fluctuating external pressure coefficients or reference wind speed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221).
文摘A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.