According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm sh...According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.展开更多
A control algorithm for a 3-RPS parallel platform driven by pneumatic cylinders is discussed. All cylinders are controlled by proportional directional valves while the kinematic and dynamic properties of the system ar...A control algorithm for a 3-RPS parallel platform driven by pneumatic cylinders is discussed. All cylinders are controlled by proportional directional valves while the kinematic and dynamic properties of the system are modeled. The method of adaptive robust control is applied to the controller using a back-stepping approach and online parameter estimation. To compensate for the uncertainty and the influence caused by estimations, a fast dynamic compensator is integrated in the controller design. To prevent any influence caused by the load applied to the moving platform changing in a practical working situation, the identification of parameters is taken as the initialization of unknown parameters in the controller, which can improve the adaptability of the algorithm. Using these methods, the response rate of the parameter estimation and control performance were improved significantly.The adverse effects of load and restriction forces were eliminated by the initialization and online estimation.Experiments under different situations illustrated the effectiveness of the adaptive robust controller with parameter initialization, approaching average tracking errors of less than 1%.展开更多
文摘According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure pm shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.
基金Project supported by the National Natural Science Foundation of China(No.51375430)
文摘A control algorithm for a 3-RPS parallel platform driven by pneumatic cylinders is discussed. All cylinders are controlled by proportional directional valves while the kinematic and dynamic properties of the system are modeled. The method of adaptive robust control is applied to the controller using a back-stepping approach and online parameter estimation. To compensate for the uncertainty and the influence caused by estimations, a fast dynamic compensator is integrated in the controller design. To prevent any influence caused by the load applied to the moving platform changing in a practical working situation, the identification of parameters is taken as the initialization of unknown parameters in the controller, which can improve the adaptability of the algorithm. Using these methods, the response rate of the parameter estimation and control performance were improved significantly.The adverse effects of load and restriction forces were eliminated by the initialization and online estimation.Experiments under different situations illustrated the effectiveness of the adaptive robust controller with parameter initialization, approaching average tracking errors of less than 1%.