In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, the...In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.展开更多
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through...In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.展开更多
According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the mo...According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.展开更多
A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality fa...A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality factor. Due to the paucity of recorded events, this is the first time these model parameters have been obtained for the northeastern and its surrounding region of India. The quality factors of the horizontal and vertical components of recorded events with corresponding standard deviations are QH(f) = 188.55f0.94, σ-1 value (25, 0.025) and Qv(f) = 169.76f0.93,σs value (20, 0.03), respectively. The source parameter stress drop values (△σ-) vary within 124 180 bars for the subduction region and 80 169 bars for the active region. The Kappa factors for the horizontal and vertical components of recorded events on the soft rock site are 0.06 and 0.05, respectively. These seismological model parameters obtained in this study will be useful for future work deriving a ground motion attenuation relation based on a spectral model. Finally, these results are useful for seismic hazard assessment of a region having sparsely recorded events.展开更多
This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ...This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.展开更多
This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and...This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.展开更多
In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model e...In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.展开更多
A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single mode...A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.展开更多
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s...To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.展开更多
Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensit...Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th...Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.展开更多
The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed paramete...The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.展开更多
The frost durability of concrete is considered from structural engineering points of view.Specific failure process is analyzed and a damage model is established,which can describe the deterioration of concrete during ...The frost durability of concrete is considered from structural engineering points of view.Specific failure process is analyzed and a damage model is established,which can describe the deterioration of concrete during the whole freeze thawing process.The model is verified by test data.The parameters of model can explain the effect of pore structures or water to binder ratio on frost durability of concrete.展开更多
To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compl...To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.展开更多
Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m...Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test r...In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.展开更多
This paper is an introduction to mesh based generated reluctance network modeling.An overview of scientific works which led to the development of this approach is first presented.Basic concepts of the approach are the...This paper is an introduction to mesh based generated reluctance network modeling.An overview of scientific works which led to the development of this approach is first presented.Basic concepts of the approach are then presented in the case of electromagnetic devices.A step-by-step procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB and Scilab environments are also included.展开更多
基金supported partially by the Important National Science&Technology Specific Projects,China(Grant No.2013ZX02503003)
文摘In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.
基金Supported by the National Natural Science Foundation of China(10272109)
文摘In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.
文摘According to two properties of the life cycle and to fluctuation with parities, four mathemati- cal models, the Poisson cycle model, the cubic polyno- mial model, the modified quadratic polynomial model- I artd the modified quadratic polynomial model-H, were used to fit the records of litter size in Jiangquhai sows. From the viewpoint of statistics and biological significance, the modified quadratic polynomial mod- el-I was found to be the optimum model. A single traitanimal model and DFREML procedures were further used to estimate the heritability values of optimum model parameters. The results show that the heritabili- ty values for the coefficients A and B and the herita- bility value for the acme of the model pure quadric curve are larger than the heritability value for the litter size. This suggests that selection for model parameters may be more effective than direct selection for litter size.
文摘A point source seismological model is used in this study to model the available strong motion accelerograms recorded by 17 events and to calculate three seismological model parameters, the source, path, and quality factor. Due to the paucity of recorded events, this is the first time these model parameters have been obtained for the northeastern and its surrounding region of India. The quality factors of the horizontal and vertical components of recorded events with corresponding standard deviations are QH(f) = 188.55f0.94, σ-1 value (25, 0.025) and Qv(f) = 169.76f0.93,σs value (20, 0.03), respectively. The source parameter stress drop values (△σ-) vary within 124 180 bars for the subduction region and 80 169 bars for the active region. The Kappa factors for the horizontal and vertical components of recorded events on the soft rock site are 0.06 and 0.05, respectively. These seismological model parameters obtained in this study will be useful for future work deriving a ground motion attenuation relation based on a spectral model. Finally, these results are useful for seismic hazard assessment of a region having sparsely recorded events.
文摘This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis.
文摘This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.
文摘In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.
基金supported by Innovation Project of Chinese Academy of Sciences
文摘A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.
基金funding from the Paul ScherrerInstitute,Switzerland through the NES/GFA-ABE Cross Project。
文摘To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
基金sponsored by the Knowl-edge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-QN203)the National Basic Re-search Program of China (No. 2007CB411800)the GYHY200906009 of the China Meteorological Administra-tion
文摘Within a theoretical ENSO model, the authors investigated whether or not the errors superimposed on model parameters could cause a significant "spring predictability barrier" (SPB) for El Nio events. First, sensitivity experiments were respectively performed to the air-sea coupling parameter, α and the thermocline effect coefficient μ. The results showed that the uncertainties superimposed on each of the two parameters did not exhibit an obvious season-dependent evolution; furthermore, the uncertainties caused a very small prediction error and consequently failed to yield a significant SPB. Subsequently, the conditional nonlinear optimal perturbation (CNOP) approach was used to study the effect of the optimal mode (CNOP-P) of the uncertainties of the two parameters on the SPB and to demonstrate that the CNOP-P errors neither presented a unified season-dependent evolution for different El Nio events nor caused a large prediction error, and therefore did not cause a significant SPB. The parameter errors played only a trivial role in yielding a significant SPB. To further validate this conclusion, the authors investigated the effect of the optimal combined mode (i.e. CNOP error) of initial and model errors on SPB. The results illustrated that the CNOP errors tended to have a significant season-dependent evolution, with the largest error growth rate in the spring, and yielded a large prediction error, inducing a significant SPB. The inference, therefore, is that initial errors, rather than model parameter errors, may be the dominant source of uncertainties that cause a significant SPB for El Nio events. These results indicate that the ability to forecast ENSO could be greatly increased by improving the initialization of the forecast model.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金supported by the National Natural Science Foundation of China(70971103)the Specialized Research Fund for the Doctora Program of Higher Education(20120143110001)
文摘Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.
基金supported by the National Key Research and Development Plan of China under Grant(2016YFB0900600XXX)
文摘The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.
基金theNationalNaturalScienceFoundationofChina (No .5 0 2 780 39)
文摘The frost durability of concrete is considered from structural engineering points of view.Specific failure process is analyzed and a damage model is established,which can describe the deterioration of concrete during the whole freeze thawing process.The model is verified by test data.The parameters of model can explain the effect of pore structures or water to binder ratio on frost durability of concrete.
基金National Hi-tech Research Development Program of China(863 Program,No.2001AA505000-11)
文摘To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.
基金Supported by National Natural Science Foundation of China(Grant No.51835009).
文摘Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金supported by the National Natural Science Foundation of China(50775028)the Ministry of Science and Technology of China for the 863 High-Tech Scheme(2007AA04Z418)
文摘In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.
文摘This paper is an introduction to mesh based generated reluctance network modeling.An overview of scientific works which led to the development of this approach is first presented.Basic concepts of the approach are then presented in the case of electromagnetic devices.A step-by-step procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB and Scilab environments are also included.