期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
1
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 Aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
下载PDF
Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling
2
作者 高曙明 彭群生 《Journal of Computer Science & Technology》 SCIE EI CSCD 1997年第3期193-201,共9页
A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stag... A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stages of a design process. An efficient approach to parametric featu-re based modeling is also presented, adopting the high level geometric constraint model. The low level geometric model such as B-reps can be derived automatically from the high level geometric constraint model, enabling designers to perform their task of detailed design. 展开更多
关键词 Hierarchical geometric constraint model parametric design feature based modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部