Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame w...Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.展开更多
Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is co...Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is constrained by the Rayleigh diffraction limit. The resolution and sensitivity of phase measurement can be enhanced by using quantum metrology. We propose a quantum interference metrology scheme using the entangled squeezed vacuum state, which is obtained using the magic beam splitter, expressed as |ψ〉=(|ξ〉|0〉+|0〉|ξ〉)/√2+2/coshr, such as the N00 N state. We derive the phase sensitivity and the resolution of the system with Z detection, project detection, and parity detection. By simulation and analysis, we determine that parity detection is an optimal detection method, which can break through the Rayleigh diffraction limit and the standard quantum limit.展开更多
Spectra and E2 transition rates for the 160-170Er isotopes are studied in the framework of the interaction boson model. A schematic Hamiltonian able to describe their spectra and B(E2) transition is used. It is found ...Spectra and E2 transition rates for the 160-170Er isotopes are studied in the framework of the interaction boson model. A schematic Hamiltonian able to describe their spectra and B(E2) transition is used. It is found that the 160-170Er isotopes are in the transition from the vibrational limit to rotational limit.展开更多
文摘Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.
文摘Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is constrained by the Rayleigh diffraction limit. The resolution and sensitivity of phase measurement can be enhanced by using quantum metrology. We propose a quantum interference metrology scheme using the entangled squeezed vacuum state, which is obtained using the magic beam splitter, expressed as |ψ〉=(|ξ〉|0〉+|0〉|ξ〉)/√2+2/coshr, such as the N00 N state. We derive the phase sensitivity and the resolution of the system with Z detection, project detection, and parity detection. By simulation and analysis, we determine that parity detection is an optimal detection method, which can break through the Rayleigh diffraction limit and the standard quantum limit.
文摘Spectra and E2 transition rates for the 160-170Er isotopes are studied in the framework of the interaction boson model. A schematic Hamiltonian able to describe their spectra and B(E2) transition is used. It is found that the 160-170Er isotopes are in the transition from the vibrational limit to rotational limit.