In recent years, with the large increase in the number of motor vehicles in colleges and universities and the lag in campus planning, the relative shortage of parking spaces on campus has become increasingly serious. ...In recent years, with the large increase in the number of motor vehicles in colleges and universities and the lag in campus planning, the relative shortage of parking spaces on campus has become increasingly serious. Taking Baoding College as an example, this article analyzes the current situation of static traffic on campus and finds out the problem of parking on campus through questionnaire surveys and field surveys. Analyze the growth trend of the number of motor vehicles based on the data, use the GM (1, 1) model and the linear fitting model to predict the number of motor vehicles in the future, and determine the size and layout of the parking lot based on the campus size, functional zoning, and road layout. The big campus-based parking system planning method based on big data can effectively solve the problems of small sample data, low accuracy, and poor timeliness of traditional methods, which improves the practicability and scientificity of planning results.展开更多
文摘In recent years, with the large increase in the number of motor vehicles in colleges and universities and the lag in campus planning, the relative shortage of parking spaces on campus has become increasingly serious. Taking Baoding College as an example, this article analyzes the current situation of static traffic on campus and finds out the problem of parking on campus through questionnaire surveys and field surveys. Analyze the growth trend of the number of motor vehicles based on the data, use the GM (1, 1) model and the linear fitting model to predict the number of motor vehicles in the future, and determine the size and layout of the parking lot based on the campus size, functional zoning, and road layout. The big campus-based parking system planning method based on big data can effectively solve the problems of small sample data, low accuracy, and poor timeliness of traditional methods, which improves the practicability and scientificity of planning results.