This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state informat...This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.展开更多
Due to the large number of users and the time-varying characteristics of wireless channels, it is very tough to inform the transmitter of full channel information in real multi-user MIMO broadcast systems. On the othe...Due to the large number of users and the time-varying characteristics of wireless channels, it is very tough to inform the transmitter of full channel information in real multi-user MIMO broadcast systems. On the other hand, the capacity of multi-user systems greatly depends on the knowledge of the channel at the transmitter while this is not always the case in single-user MIMO systems. In this paper, we investigate combined user selection and zero-forcing precoding schemes that use partial channel information, i.e., very low amount of channel information at the base station. We show that while greatly reducing the complexity and channel knowledge feedback load, the proposed schemes preserve the optimality of zero-forcing scheme in term of achievable ergodic sum capacity in limit of large number of active users.展开更多
The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made befor...The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made before using the traditional ones. In this ar- ticle, we give a new model selection criterion, based on the assumption that noise term in the model is independent with explanatory variables, of minimizing the association strength between regression residuals and the response, with fewer assumptions. Maximal Information Coe^cient (MIC), a recently proposed dependence measure, captures a wide range of associ- ations, and gives almost the same score to different type of relationships with equal noise, so MIC is used to measure the association strength. Furthermore, partial maximal information coefficient (PMIC) is introduced to capture the association between two variables removing a third controlling random variable. In addition, the definition of general partial relationship is given.展开更多
In optimal wind bidding strategy related literatures, it is usually assumed that the full distribution information (for example, the cumulative distribution function or the probability density function) of wind power ...In optimal wind bidding strategy related literatures, it is usually assumed that the full distribution information (for example, the cumulative distribution function or the probability density function) of wind power output is known. In real world applications, however, only very limited distribution information can be obtained. Therefore, the “optimal bidding strategy” obtained based on the hypothetical distribution may be far away from the true optimal one. In this paper, an optimal bidding strategy is obtained based on the minimax regret criterion. The salient feature of the new approach is that it requires only partial information of wind power distribution, for example, the expectation and the support set. Numerical test is then performed and the results suggest that the method established in this paper is effective.展开更多
In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially acc...In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.展开更多
Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthr...Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthrough in solving partial differential equations using neural networks.In this paper,a resampling technique based on the expansion-shrinkage point(ESP)selection strategy is developed to dynamically modify the distribution of training points in accordance with the performance of the neural networks.In this new approach both training sites with slight changes in residual values and training points with large residuals are taken into account.In order to make the distribution of training points more uniform,the concept of continuity is further introduced and incorporated.This method successfully addresses the issue that the neural network becomes ill or even crashes due to the extensive alteration of training point distribution.The effectiveness of the improved physics-informed neural networks with expansion-shrinkage resampling is demonstrated through a series of numerical experiments.展开更多
The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.I...The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.展开更多
A general method of probabilistic fatigue damage prognostics using limited and partial information is developed.Limited and partial information refers to measurable data that are not enough or cannot directly be used ...A general method of probabilistic fatigue damage prognostics using limited and partial information is developed.Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis.In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy(Max Ent) using the limited and partial information as constraints.The posterior distribution is formulated using the principle of maximum relative entropy(MRE) to perform probability updating when new information is available and reduces uncertainty in prognosis results.It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements.A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution.Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo(MCMC) simulations.Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.展开更多
This paper is concerned with an optimal reinsurance and investment problem for an insurance firm under the criterion of mean-variance. The driving Brownian motion and the rate in return of the risky asset price dynami...This paper is concerned with an optimal reinsurance and investment problem for an insurance firm under the criterion of mean-variance. The driving Brownian motion and the rate in return of the risky asset price dynamic equation cannot be directly observed. And the short-selling of stocks is prohibited. The problem is formulated as a stochastic linear-quadratic control problem where the control variables are constrained. Based on the separation principle and stochastic filtering theory, the partial information problem is solved. Efficient strategies and efficient frontier are presented in closed forms via solutions to two extended stochastic Riccati equations. As a comparison, the efficient strategies and efficient frontier are given by the viscosity solution to the HJB equation in the full information case. Some numerical illustrations are also provided.展开更多
In this paper,we investigate the power and subcarrier allocation issue in the case of partial side information for downlink orthogonal frequency division multiple access (OFDMA) system.Relaxation method is utilized ...In this paper,we investigate the power and subcarrier allocation issue in the case of partial side information for downlink orthogonal frequency division multiple access (OFDMA) system.Relaxation method is utilized to characterize the necessary conditions of the optimal solution and the uniqueness of the optimal solution is proved.The game theoretical concept,surplus function is also introduced to analyze the optimal solution.Based on the theoretical analysis,we propose iterative surplus balancing algorithm (ISBA) that can jointly assign the power and subcarriers in multiple rounds,and then the optimality of ISBA is proved.Simulation results are presented to show the characteristics of the theoretical analysis and ISBA.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2017YFE0120600in part by National Natural Science Foundation of China under Grants 61801192,62171200,and 61801246+7 种基金in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515012136in part by Natural Science Foundation of Anhui Province under Grant 1808085MF164in part by the Science and Technology Planning Project of Guangdong Province under Grants 2018B010114002 and 2019B010137006in part by the Science and Technology Development Fund,Macao SAR(File no.0036/2019/A1 and File no.SKL-IOTSC2021-2023)in part by the Hong Kong Presidents Advisory Committee on Research and Development(PACRD)under Project No.2020/1.6in part by Qinglan Project of University of Jiangsu Provincein part by the Research Committee of University of Macao under Grant MYRG2018-00156-FSTin part by 2018 Guangzhou Leading Innovation Team Program(China)under Grant 201909010006。
文摘This paper focuses on boosting the performance of small cell networks(SCNs)by integrating multiple-input multiple-output(MIMO)and nonorthogonal multiple access(NOMA)in consideration of imperfect channel-state information(CSI).The estimation error and the spatial randomness of base stations(BSs)are characterized by using Kronecker model and Poisson point process(PPP),respectively.The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies,including random grouping and distance-based grouping.It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime,while the outage performance deteriorates if the intensity is sufficiently low.Besides,as the channel uncertainty lessens,the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover,highly correlated estimation error ameliorates the outage performance under a low quality of CSI,otherwise it behaves oppositely.Afterwards,the goodput is maximized by choosing appropriate precoding matrix,receiver filters and transmission rates.In the end,the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.
文摘Due to the large number of users and the time-varying characteristics of wireless channels, it is very tough to inform the transmitter of full channel information in real multi-user MIMO broadcast systems. On the other hand, the capacity of multi-user systems greatly depends on the knowledge of the channel at the transmitter while this is not always the case in single-user MIMO systems. In this paper, we investigate combined user selection and zero-forcing precoding schemes that use partial channel information, i.e., very low amount of channel information at the base station. We show that while greatly reducing the complexity and channel knowledge feedback load, the proposed schemes preserve the optimality of zero-forcing scheme in term of achievable ergodic sum capacity in limit of large number of active users.
基金partly supported by National Basic Research Program of China(973 Program,2011CB707802,2013CB910200)National Science Foundation of China(11201466)
文摘The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made before using the traditional ones. In this ar- ticle, we give a new model selection criterion, based on the assumption that noise term in the model is independent with explanatory variables, of minimizing the association strength between regression residuals and the response, with fewer assumptions. Maximal Information Coe^cient (MIC), a recently proposed dependence measure, captures a wide range of associ- ations, and gives almost the same score to different type of relationships with equal noise, so MIC is used to measure the association strength. Furthermore, partial maximal information coefficient (PMIC) is introduced to capture the association between two variables removing a third controlling random variable. In addition, the definition of general partial relationship is given.
文摘In optimal wind bidding strategy related literatures, it is usually assumed that the full distribution information (for example, the cumulative distribution function or the probability density function) of wind power output is known. In real world applications, however, only very limited distribution information can be obtained. Therefore, the “optimal bidding strategy” obtained based on the hypothetical distribution may be far away from the true optimal one. In this paper, an optimal bidding strategy is obtained based on the minimax regret criterion. The salient feature of the new approach is that it requires only partial information of wind power distribution, for example, the expectation and the support set. Numerical test is then performed and the results suggest that the method established in this paper is effective.
基金Supported by National Natural Science Foundation of China(11271039)
文摘In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFC1807905)the National Natural Science Foundation of China(Grant Nos.52079090 and U20A20316)the Basic Research Program of Qinghai Province(Grant No.2022-ZJ-704).
文摘Neural network methods have been widely used in many fields of scientific research with the rapid increase of computing power.The physics-informed neural networks(PINNs)have received much attention as a major breakthrough in solving partial differential equations using neural networks.In this paper,a resampling technique based on the expansion-shrinkage point(ESP)selection strategy is developed to dynamically modify the distribution of training points in accordance with the performance of the neural networks.In this new approach both training sites with slight changes in residual values and training points with large residuals are taken into account.In order to make the distribution of training points more uniform,the concept of continuity is further introduced and incorporated.This method successfully addresses the issue that the neural network becomes ill or even crashes due to the extensive alteration of training point distribution.The effectiveness of the improved physics-informed neural networks with expansion-shrinkage resampling is demonstrated through a series of numerical experiments.
基金supported by Basic Research Program of China (Grant No.2007CB814904)National Natural Science Foundation of China (Grant No.10325101)Natural Science Foundation of Zhejiang Province (Grant No.Y605478,Y606667)
文摘The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.
文摘A general method of probabilistic fatigue damage prognostics using limited and partial information is developed.Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis.In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy(Max Ent) using the limited and partial information as constraints.The posterior distribution is formulated using the principle of maximum relative entropy(MRE) to perform probability updating when new information is available and reduces uncertainty in prognosis results.It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements.A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution.Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo(MCMC) simulations.Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.
基金supported by National Key R&D Program of China under Grant No.2018YFB1305400the National Natural Science Foundations of China under Grant Nos.11971266,11831010,11571205Shandong Provincial Natural Science Foundations under Grant Nos.ZR2020ZD24,ZR2019ZD42。
文摘This paper is concerned with an optimal reinsurance and investment problem for an insurance firm under the criterion of mean-variance. The driving Brownian motion and the rate in return of the risky asset price dynamic equation cannot be directly observed. And the short-selling of stocks is prohibited. The problem is formulated as a stochastic linear-quadratic control problem where the control variables are constrained. Based on the separation principle and stochastic filtering theory, the partial information problem is solved. Efficient strategies and efficient frontier are presented in closed forms via solutions to two extended stochastic Riccati equations. As a comparison, the efficient strategies and efficient frontier are given by the viscosity solution to the HJB equation in the full information case. Some numerical illustrations are also provided.
基金supported by Sino-Swedish International Mobile Telecommunications-Advanced (IMT-A) Cooperation Project (2008DFA11780)Canada-China Scientific and Technological Cooperation (2010DFA11320)+1 种基金National Natural Science Foundation of China (60802033, 60873190)the Research and Development Program Hi-Tech of China (2008AA01Z211)
文摘In this paper,we investigate the power and subcarrier allocation issue in the case of partial side information for downlink orthogonal frequency division multiple access (OFDMA) system.Relaxation method is utilized to characterize the necessary conditions of the optimal solution and the uniqueness of the optimal solution is proved.The game theoretical concept,surplus function is also introduced to analyze the optimal solution.Based on the theoretical analysis,we propose iterative surplus balancing algorithm (ISBA) that can jointly assign the power and subcarriers in multiple rounds,and then the optimality of ISBA is proved.Simulation results are presented to show the characteristics of the theoretical analysis and ISBA.