Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
The unsteady oscillatory flow of an incompressible second grade fluid in a cylindrical tube with large wall suction is studied analytically. Flow in the tube is due to uniform suction at the permeable walls, and the o...The unsteady oscillatory flow of an incompressible second grade fluid in a cylindrical tube with large wall suction is studied analytically. Flow in the tube is due to uniform suction at the permeable walls, and the oscillations in the velocity field are due to small amplitude time harmonic pressure waves. The physical quantities of interest are the velocity field, the amplitude of oscillation, and the penetration depth of the oscillatory wave. The analytical solution of the governing boundary value problem is obtained, and the effects of second grade fluid parameters are analyzed and discussed.展开更多
This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use th...This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use the information in the weighted matrix of weighted quadratic loss to improve one part of risk. However, this paper indirectly takes advantage of the information in the sample mean and reuses Iwasawa coordinates to improve the rest of risk. It is worth mentioning that the process above can be repeated. Finally, a Monte Carlo simulation study is carried out to verify the theoretical results.展开更多
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
文摘The unsteady oscillatory flow of an incompressible second grade fluid in a cylindrical tube with large wall suction is studied analytically. Flow in the tube is due to uniform suction at the permeable walls, and the oscillations in the velocity field are due to small amplitude time harmonic pressure waves. The physical quantities of interest are the velocity field, the amplitude of oscillation, and the penetration depth of the oscillatory wave. The analytical solution of the governing boundary value problem is obtained, and the effects of second grade fluid parameters are analyzed and discussed.
基金supported by the National Natural Science Foundation of China under Grant No.11371236the Graduate Student Innovation Foundation of Shanghai University of Finance and Economics(CXJJ-2015-440)
文摘This paper is concerned with tile proOlenl or improving hue ~lma^u~ u~ under Stein's loss. By the partial Iwasawa coordinates of covariance matrix, the corresponding risk can be split into three parts. One can use the information in the weighted matrix of weighted quadratic loss to improve one part of risk. However, this paper indirectly takes advantage of the information in the sample mean and reuses Iwasawa coordinates to improve the rest of risk. It is worth mentioning that the process above can be repeated. Finally, a Monte Carlo simulation study is carried out to verify the theoretical results.