Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti...Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.展开更多
As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive,...As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.展开更多
基金supported by the 948 Program of the State Forestry Administration (2009-4-43)the National Natura Science Foundation of China (No.30870420)
文摘Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.16KJB510009 and No.17KJB510017)Jiangsu Province Natural Science Foundation of China (BK20150228)
文摘As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.