期刊文献+
共找到2,983篇文章
< 1 2 150 >
每页显示 20 50 100
ON THE BREAKDOWNS OF THE GALERKIN AND LEAST-SQUARES METHODS 被引量:2
1
作者 Zhong Baojiang(钟宝江) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期137-148,共12页
The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of t... The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type. 展开更多
关键词 large linear systems iterative methods Krylov subspace methods GALERKIN method least-squares method FOM GMRES breakdown stagnation restarting preconditioners.
下载PDF
NEGATIVE NORM LEAST-SQUARES METHODS FOR THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS 被引量:2
2
作者 高少芹 段火元 《Acta Mathematica Scientia》 SCIE CSCD 2008年第3期675-684,共10页
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not... The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω). 展开更多
关键词 The incompressible MHDs equation negative norm VORTICITY least-squares mixed finite element method
下载PDF
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
3
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
4
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
Estimating canopy closure density and above-ground tree biomass using partial least square methods in Chinese boreal forests 被引量:5
5
作者 LEI Cheng-liang JU Cun-yong +3 位作者 CAI Ti-jiu J1NG Xia WEI Xiao-hua DI Xue-ying 《Journal of Forestry Research》 CAS CSCD 2012年第2期191-196,共6页
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti... Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass. 展开更多
关键词 above-ground tree biomass bootstrap method canopy clo- sure density partial least square regression (PLSR) VIP criterion
下载PDF
LEAST-SQUARES METHOD-BASED FEATURE FITTING AND EXTRACTION IN REVERSE ENGINEERING 被引量:3
6
作者 Ke YinglinSun QingLu ZhenCollege of Mechanical andEnergy Engineering,Zhejiang University,Hangzhou 310027, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期163-166,共4页
The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau... The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud. 展开更多
关键词 reverse engineering feature extraction least-squares method segmentationand surface fitting
下载PDF
Solution of shallow-water equations using least-squares finite-element method 被引量:3
7
作者 S.J. Liang J,-H, Tang M.-S. Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第5期523-532,共10页
A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercriti... A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results. 展开更多
关键词 least-square finite-element method Shallow-water equations DAM-BREAK Vortex shedding
下载PDF
Least-squares finite-element method for shallow-water equations with source terms 被引量:2
8
作者 Shin-Jye Liang Tai-Wen Hsu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期597-610,共14页
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of s... Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities. 展开更多
关键词 Shallow-water equations Source terms least-squares finite-element method DAM-BREAK C-property
下载PDF
An Introduction to Numerical Methods for the Solutions of Partial Differential Equations 被引量:1
9
作者 Manoj Kumar Garima Mishra 《Applied Mathematics》 2011年第11期1327-1338,共12页
Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The... Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The present paper deals with a general introduction and classification of partial differential equations and the numerical methods available in the literature for the solution of partial differential equations. 展开更多
关键词 partial Differential EQUATIONS EIGENVALUE FINITE Difference method FINITE Volume method FINITE Element method
下载PDF
A partial least-squares regression approach to land use studies in the Suzhou-Wuxi-Changzhou region 被引量:1
10
作者 ZHANG Yang ZHOU Chenghu ZHANG Yongmin 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期234-244,共11页
In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically ind... In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically independent. But in fact, they have the tendency to be dependent, a phenomenon known as multicollinearity, especially in the cases of few observations. In this paper, a Partial Least-Squares (PLS) regression approach is developed to study relationships between land use and its influencing factors through a case study of the Suzhou-Wuxi-Changzhou region in China. Multicollinearity exists in the dataset and the number of variables is high compared to the number of observations. Four PLS factors are selected through a preliminary analysis. The correlation analyses between land use and influencing factors demonstrate the land use character of rural industrialization and urbanization in the Suzhou-Wuxi-Changzhou region, meanwhile illustrate that the first PLS factor has enough ability to best describe land use patterns quantitatively, and most of the statistical relations derived from it accord with the fact. By the decreasing capacity of the PLS factors, the reliability of model outcome decreases correspondingly. 展开更多
关键词 land use multivariate data analysis partial least-squares regression Suzhou-Wuxi-Changzhou region MULTICOLLINEARITY
下载PDF
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
11
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
Optimization of Random Feature Method in the High-Precision Regime
12
作者 Jingrun Chen Weinan E Yifei Sun 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1490-1517,共28页
Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in te... Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent. 展开更多
关键词 Random feature method(RFM) partial differential equation(PDE) least-squares problem Direct method Iterative method
下载PDF
Monte Carlo method for evaluation of surface emission rate measurement uncertainty
13
作者 Yuan-Qiao Li Min Lin +4 位作者 Li-Jun Xu Rui Luo Yu-He Zhang Qian-Xi Ni Yun-Tao Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期126-136,共11页
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co... The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results. 展开更多
关键词 Surface emission rate Monte Carlo method METROLOGY Probability distribution function Dead time Low-energy loss correction least-squares method
下载PDF
THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR AN ANISOTROPIC MEDIUM BY A PARTIALLY COATED BOUNDARY
14
作者 向建立 严国政 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期339-354,共16页
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and... We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method. 展开更多
关键词 interior transmission eigenvalue anisotropic medium partially coated boundary the analytic Fredholm theory T-coercive method
下载PDF
Factorized Smith Method for A Class of High-Ranked Large-ScaleТ-Stein Equations
15
作者 LI Xiang YU Bo TANG Qiong 《Chinese Quarterly Journal of Mathematics》 2024年第3期235-249,共15页
We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi... We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time. 展开更多
关键词 Large-scale J-Stein equations High-ranked Deflation and shift partially truncation and compression Smith method
下载PDF
Modified Laguerre spectral and pseudospectral methods for nonlinear partial differential equations in multiple dimensions
16
作者 徐承龙 郭本瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第3期311-331,共21页
The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est... The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches. 展开更多
关键词 modified Laguerre orthogonal approximation and interpolation multiple dimensions spectral and pseudospectral methods nonlinear partial differential equations
下载PDF
An Adaptive Least-Squares Mixed Finite Element Method for Fourth Order Parabolic Problems
17
作者 Ning Chen Haiming Gu 《Applied Mathematics》 2013年第4期675-679,共5页
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi... A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved. 展开更多
关键词 ADAPTIVE method least-squares Mixed Finite Element method FOURTH Order Parabolic Problems least-squares Functional A POSTERIORI Error
下载PDF
LEAST-SQUARES MIXED FINITE ELEMENT METHOD FOR A CLASS OF STOKES EQUATION
18
作者 顾海明 羊丹平 +1 位作者 隋树林 刘新民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第5期557-566,共10页
A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary ... A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces. 展开更多
关键词 least-squares mixed finite element method error estimates
下载PDF
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
19
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES partial least-squares AS
下载PDF
Least-Squares Finite Element Method for the Steady Upper-Convected Maxwell Fluid
20
作者 Shaoling Zhou Lei Hou 《Advances in Pure Mathematics》 2015年第5期233-239,共7页
In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the line... In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns. 展开更多
关键词 Upper-Convected MAXWELL FLUID least-squares Finite Element method VISCOELASTIC FLUID Model
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部