期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
1
作者 Xue-Yun Bai Su-Ying Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期163-169,共7页
We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reser... We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength. 展开更多
关键词 geometric quantum discord(GQD) the Hilbert-Schmidt norm GQD the trace norm GQD partially collapsing measurements
下载PDF
Resilient Smart Power Grid Synchronization Estimation Method for System Resilience with Partial Missing Measurements
2
作者 Yi Wang Yanxin Liu +3 位作者 Mingdong Wang Venkata Dinavahi Jun Liang Yonghui Sun 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1307-1319,共13页
With the increasing demand for power system stability and resilience,effective real-time tracking plays a crucial role in smart grid synchronization.However,most studies have focused on measurement noise,while they se... With the increasing demand for power system stability and resilience,effective real-time tracking plays a crucial role in smart grid synchronization.However,most studies have focused on measurement noise,while they seldom think about the problem of measurement data loss in smart power grid synchronization.To solve this problem,a resilient fault-tolerant extended Kalman filter(RFTEKF)is proposed to track voltage amplitude,voltage phase angle and frequency dynamically.First,a threephase unbalanced network’s positive sequence fast estimation model is established.Then,the loss phenomenon of measurements occurs randomly,and the randomness of data loss’s randomness is defined by discrete interval distribution[0,1].Subsequently,a resilient fault-tolerant extended Kalman filter based on the real-time estimation framework is designed using the timestamp technique to acquire partial data loss information.Finally,extensive simulation results manifest the proposed RFTEKF can synchronize the smart grid more effectively than the traditional extended Kalman filter(EKF). 展开更多
关键词 Dynamic state estimation Kalman filter partial missing measurements power systems smart grid synchronized measurements
原文传递
Partial Discharge Measurement and Analysis in High Voltage IGBT Modules Under DC Voltage 被引量:16
3
作者 Pengyu Fu Zhibin Zhao +4 位作者 Xiang Cui Teng Wen Haoyu Wang Xuebao Li Peng Zhang 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第4期513-523,共11页
Insulation performance of high voltage IGBT modules is one of the key attributes in power system applications.However,the existing standards of IGBT devices and research on the evaluation of insulation performance of ... Insulation performance of high voltage IGBT modules is one of the key attributes in power system applications.However,the existing standards of IGBT devices and research on the evaluation of insulation performance of high voltage IGBT modules are insufficient;for example,partial discharge resistance under DC voltage blocking condition is not considered.In this paper,a new test was proposed to allow the measurement of partial discharges in all the components of IGBT modules under DC voltage.The topology of the measuring circuit is arranged in the polarity discrimination way to exclude the interference,and the voltage and discharge current waveforms during the partial discharge process are measured by the wideband time domain measurement technique.According to the proposed test,the discharge phenomenon of the IGBT modules below the rating voltage were detected.A comprehensive waveform analysis on the voltage and discharge current was performed,and the influence of the applied voltage on the waveform parameters was obtained.The waveform parameters are influenced by the applied voltage and insulation structure,which enables the discrimination of the causes of the observed partial discharge in the IGBT module under DC voltage by the waveform analysis technique.Based on the waveform analysis technique,the types and causes of the observed partial discharges were discussed and inferred,and the correctness of the inference was further verified by observation.The proposed test and waveform analysis technique provide the possibility to evaluate and distinguish partial discharges in the high voltage IGBT module under DC voltage,which may be helpful to insulation performance evaluation and insulation defect diagnosis in high voltage IGBT module. 展开更多
关键词 DC voltage high voltage IGBT module insulation performance partial discharge measurement waveform analysis wideband time domain measurement
原文传递
Electrical conductivity of hydrous silicate melts and aqueous fluids: Measurement and applications 被引量:5
4
作者 GUO Xuan CHEN Qi NI HuaiWei 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期889-900,共12页
The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth's deep interior. Electrical conductivity of hydrous sil... The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth's deep interior. Electrical conductivity of hydrous silicate melts and aqueous fluids is sensitive to composition, temperature, and pressure, making it useful for understanding partial melting and fluid activity at great depths. This study presents a review on the experimental studies of electrical conductivity of silicate melts and aqueous fluids, and introduces some important applications of experimental results. For silicate melts, electrical conductivity increases with increasing temperature but decreases with pressure. With a similar Na^+ concentration, along the calc-alkaline series electrical conductivity generally increases from basaltic to rhyolitic melt, accompanied by a decreasing activation enthalpy. Electrical conductivity of silicate melts is strongly enhanced with the incorporation of water due to promoted cation mobility. For aqueous fluids, research is focused on dilute electrolyte solutions. Electrical conductivity typically first increases and then decreases with increasing temperature, and increases with pressure before approaching a plateau value. The dissociation constant of electrolyte can be derived from conductivity data. To develop generally applicable quantitative models of electrical conductivity of melt/fluid addressing the dependences on temperature, pressure, and composition, it requires more electrical conductivity measurements of representative systems to be implemented in an extensive P-T range using up-to-date methods. 展开更多
关键词 Silicate melts Aqueous fluids Electrical conductivity Laboratory measurement partial melting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部