The aim of this paper is to offer a statistically sound method to make a precise account of the speed of land degradation and regeneration processes.Most common analyses of land degradation focus instead on the extent...The aim of this paper is to offer a statistically sound method to make a precise account of the speed of land degradation and regeneration processes.Most common analyses of land degradation focus instead on the extent of degraded areas,rather than on the intensity of degradation processes.The study was implemented for the Potential Extent of Desertification in China(PEDC),composed by arid,semi-arid,and dry sub-humid regions and refers to the period 2002 to 2012.The metrics were standard partial regression coefficients from stepwise regressions,fitted using Net Primary Productivity as the dependent variable,and year number and aridity as predictors.The results indicate that:①the extension of degrading lands(292896 km 2 or 9.12%of PEDC)overcomes the area that is recovering(194560 km 2 or 6.06%of PEDC);and②the intensity of degrading trends is lower than that of increasing trends in three land cover types(grassland,desert,and crops)and in two aridity levels(semi-arid and dry sub-humid).Such an outcome might pinpoint restoration policies by the Chinese government,and document a possible case of hysteresis.展开更多
Although several methods are available to study the extent of isolation by distance (IBD) among natural populations, comparatively few exist to detect the presence of sharp genetic breaks in genetic distance dataset...Although several methods are available to study the extent of isolation by distance (IBD) among natural populations, comparatively few exist to detect the presence of sharp genetic breaks in genetic distance datasets. In recent years, Monmonier's maximum-difference algorithm has been increasingly used by population geneticists. However, this method does not provide means to measure the statistical significance of such barriers, nor to determine their relative contribution to population differentiation with respect to IBD. Here, we propose an approach to assess the significance of genetic boundaries. The method is based on the calculation of a multiple regression from distance matrices, where binary matrices represent putative genetic barriers to test, in addition to geographic and genetic distances. Simulation results suggest that this method reliably detects the presence of genetic barriers, even in situations where IBD is also significant. We also illustrate the methodology by analyzing previously published datasets. Conclusions about the importance of genetic barriers can be misleading if one does not take into consideration their relative contribution to the overall genetic structure of species.展开更多
基金European Space Agency(No.4000123342/18/I-NB)Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-STSZDTP-010-02)。
文摘The aim of this paper is to offer a statistically sound method to make a precise account of the speed of land degradation and regeneration processes.Most common analyses of land degradation focus instead on the extent of degraded areas,rather than on the intensity of degradation processes.The study was implemented for the Potential Extent of Desertification in China(PEDC),composed by arid,semi-arid,and dry sub-humid regions and refers to the period 2002 to 2012.The metrics were standard partial regression coefficients from stepwise regressions,fitted using Net Primary Productivity as the dependent variable,and year number and aridity as predictors.The results indicate that:①the extension of degrading lands(292896 km 2 or 9.12%of PEDC)overcomes the area that is recovering(194560 km 2 or 6.06%of PEDC);and②the intensity of degrading trends is lower than that of increasing trends in three land cover types(grassland,desert,and crops)and in two aridity levels(semi-arid and dry sub-humid).Such an outcome might pinpoint restoration policies by the Chinese government,and document a possible case of hysteresis.
基金supported by a Natural Sciences and Engineering Research Council of Canada scholarship and a Fonds Québécois de la Recherche sur la Nature et les Technologies scholarship to S.R.P.a Natural Sciences and Engineering Research Council of Canada grant to F.-J.L.
文摘Although several methods are available to study the extent of isolation by distance (IBD) among natural populations, comparatively few exist to detect the presence of sharp genetic breaks in genetic distance datasets. In recent years, Monmonier's maximum-difference algorithm has been increasingly used by population geneticists. However, this method does not provide means to measure the statistical significance of such barriers, nor to determine their relative contribution to population differentiation with respect to IBD. Here, we propose an approach to assess the significance of genetic boundaries. The method is based on the calculation of a multiple regression from distance matrices, where binary matrices represent putative genetic barriers to test, in addition to geographic and genetic distances. Simulation results suggest that this method reliably detects the presence of genetic barriers, even in situations where IBD is also significant. We also illustrate the methodology by analyzing previously published datasets. Conclusions about the importance of genetic barriers can be misleading if one does not take into consideration their relative contribution to the overall genetic structure of species.