Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state ...Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state of health(SOH)estimation.This study addresses this issue by developing a transfer-learning-based OCV reconstruction model using a temporal convolutional long short-term memory(TCN-LSTM)network trained on synthetic data from an automotive nickel cobalt aluminium oxide(NCA)cell generated through a mechanistic model approach.The data consists of voltage curves at constant temperature,C-rates between C/30 to 1C,and a SOH-range from 70%to 100%.The model is refined via Bayesian optimization and then applied to four use cases with reduced experimental nickel manganese cobalt oxide(NMC)cell training data for higher use cases.The TL models’performances are compared with models trained solely on experimental data,focusing on different C-rates and voltage windows.The results demonstrate that the OCV reconstruction mean absolute error(MAE)within the average battery electric vehicle(BEV)home charging window(30%to 85%state of charge(SOC))is less than 22 mV for the first three use cases across all C-rates.The SOH estimated from the reconstructed OCV exhibits an mean absolute percentage error(MAPE)below 2.2%for these cases.The study further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets,a lithium iron phosphate(LFP)cell and an entirely artificial,non-existing,cell,showing that solely the shifting and scaling of gradient changes in the charging curve suffice to transfer knowledge,even between different cell chemistries.A key limitation with respect to extrapolation capability is identified and evidenced in our fourth use case,where the absence of such comprehensive data hindered the TL process.展开更多
电池健康状况的在线估计对于电池管理系统一直是一个非常重要的问题。近年来,由于其具有灵活性和无模型优势,基于数据驱动的方法在在线健康状态(state of health,SOH)估计领域展现出极大的潜力。文中针对现有的大部分基于数据驱动的SOH...电池健康状况的在线估计对于电池管理系统一直是一个非常重要的问题。近年来,由于其具有灵活性和无模型优势,基于数据驱动的方法在在线健康状态(state of health,SOH)估计领域展现出极大的潜力。文中针对现有的大部分基于数据驱动的SOH估计方法存在计算量大以及较难在BMS微控制器中实现等问题,提出一种采用片段充电曲线和核岭回归(kernel ridge regression,KRR)的锂离子电池SOH估计方法。KRR是一种基于核方法的非线性回归算法,通过将核技巧与岭回归结合,能够建立充电电压片段和SOH之间的非线性映射关系。在2个公开锂离子电池老化数据集上的实验表明,该方法只需采用实际电池使用工况中容易获得的充电电压片段,就能够实现快速准确的SOH估计,并且应用到现有的BMS微控制器中。展开更多
文摘Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state of health(SOH)estimation.This study addresses this issue by developing a transfer-learning-based OCV reconstruction model using a temporal convolutional long short-term memory(TCN-LSTM)network trained on synthetic data from an automotive nickel cobalt aluminium oxide(NCA)cell generated through a mechanistic model approach.The data consists of voltage curves at constant temperature,C-rates between C/30 to 1C,and a SOH-range from 70%to 100%.The model is refined via Bayesian optimization and then applied to four use cases with reduced experimental nickel manganese cobalt oxide(NMC)cell training data for higher use cases.The TL models’performances are compared with models trained solely on experimental data,focusing on different C-rates and voltage windows.The results demonstrate that the OCV reconstruction mean absolute error(MAE)within the average battery electric vehicle(BEV)home charging window(30%to 85%state of charge(SOC))is less than 22 mV for the first three use cases across all C-rates.The SOH estimated from the reconstructed OCV exhibits an mean absolute percentage error(MAPE)below 2.2%for these cases.The study further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets,a lithium iron phosphate(LFP)cell and an entirely artificial,non-existing,cell,showing that solely the shifting and scaling of gradient changes in the charging curve suffice to transfer knowledge,even between different cell chemistries.A key limitation with respect to extrapolation capability is identified and evidenced in our fourth use case,where the absence of such comprehensive data hindered the TL process.
文摘电池健康状况的在线估计对于电池管理系统一直是一个非常重要的问题。近年来,由于其具有灵活性和无模型优势,基于数据驱动的方法在在线健康状态(state of health,SOH)估计领域展现出极大的潜力。文中针对现有的大部分基于数据驱动的SOH估计方法存在计算量大以及较难在BMS微控制器中实现等问题,提出一种采用片段充电曲线和核岭回归(kernel ridge regression,KRR)的锂离子电池SOH估计方法。KRR是一种基于核方法的非线性回归算法,通过将核技巧与岭回归结合,能够建立充电电压片段和SOH之间的非线性映射关系。在2个公开锂离子电池老化数据集上的实验表明,该方法只需采用实际电池使用工况中容易获得的充电电压片段,就能够实现快速准确的SOH估计,并且应用到现有的BMS微控制器中。