In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructi...In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.展开更多
This paper discusses the correlation structure between London Interbank Offered Rates (LIBOR) by using the copula function. We start from one simplified model of A. Brace, D. Gatarek, and M. Musiela (1997) and fin...This paper discusses the correlation structure between London Interbank Offered Rates (LIBOR) by using the copula function. We start from one simplified model of A. Brace, D. Gatarek, and M. Musiela (1997) and find out that the copula function between two LIBOR rates can be expressed as a sum of an infinite series, where the main term is a distribution function with Gaussian copula. Partial differential equation method is used for deriving the copula expansion. Numerical results show that the copula of the LIBOR rates and Gaussian copula are very close in the central region and differ in the tail, and the Gaussian copula approximation to the copula function between the LIBOR rates provides satisfying results in the normal situation.展开更多
文摘In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.
基金The authors thank the referees for their valuable comments. Yang's research was partly supported by the Key Program of National Natural Science Foundation of China (Grant No. 11131002) and the National Natural Science Foundation of China (Grants No. 11271033). Zheng's research was supported by the Ng-Jhit-Cheong Foundation.
文摘This paper discusses the correlation structure between London Interbank Offered Rates (LIBOR) by using the copula function. We start from one simplified model of A. Brace, D. Gatarek, and M. Musiela (1997) and find out that the copula function between two LIBOR rates can be expressed as a sum of an infinite series, where the main term is a distribution function with Gaussian copula. Partial differential equation method is used for deriving the copula expansion. Numerical results show that the copula of the LIBOR rates and Gaussian copula are very close in the central region and differ in the tail, and the Gaussian copula approximation to the copula function between the LIBOR rates provides satisfying results in the normal situation.