The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, a...The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.展开更多
This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode...This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode shape functions and inherent frequencies are deduced. The results can be gained by means of computer. The analysis shows that the effect of liquid and water on vibration of cylindrical tank is respectively equivalent to a generalized distributive mass attached to the tank.展开更多
The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction metho...The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.展开更多
When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationsh...When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationship varies with the inclination of the pipe,the fluid density,the pipe wall friction coefficient,and other factors.Therefore,existing measurement methods cannot meet the accuracy requirements of many industrial applications.In this study,a new processing method is proposed by which the flow rate can be measured with an ordinary electromagnetic flowmeter even if the pipe is only partially filled.First,a B-spline curve fitting method is applied to a limited set of measurements.Second,matrix inversion required in the B-spline curve method is optimized in order to reduce the number of needed computations.Dedicated experimental tests prove that the proposed method can effectively measure the average flow velocity of the fluid.When the fluid level of the pipeline is between 50%and 100%,the relative error is less than 3.5%.展开更多
The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate betwee...The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system.展开更多
Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The perform...Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The performance of the configurations is evaluated by comparing the open-circuit voltage, the short-circuit current, the maximum power point (MPP), the voltage and current corresponding to MPP, and the Fill Factor (FF). The variations of the series resistance and the shunt resistance of a PV module under different irradiance levels are also determined by considering the effect of thermal voltage. Finally, a comparison between the performance losses in the different configurations is presented. The results of this study show that the parallel configuration has the best performance under the conditions of partial shade in the context of this work.展开更多
文摘The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.
文摘This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode shape functions and inherent frequencies are deduced. The results can be gained by means of computer. The analysis shows that the effect of liquid and water on vibration of cylindrical tank is respectively equivalent to a generalized distributive mass attached to the tank.
文摘The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.
基金the Science and Technology Project of Education Department of the Guangdong Province,China(2017GKTSCX079)Science and Technology Project of Zhongshan Polytechnic,China(2018G01).
文摘When a pipe is partially filled with a given working liquid,the relationship between the electromotive force(EMF)measured by the sensor(flowmeter)and the average velocity is nonlinear and non-monotonic.This relationship varies with the inclination of the pipe,the fluid density,the pipe wall friction coefficient,and other factors.Therefore,existing measurement methods cannot meet the accuracy requirements of many industrial applications.In this study,a new processing method is proposed by which the flow rate can be measured with an ordinary electromagnetic flowmeter even if the pipe is only partially filled.First,a B-spline curve fitting method is applied to a limited set of measurements.Second,matrix inversion required in the B-spline curve method is optimized in order to reduce the number of needed computations.Dedicated experimental tests prove that the proposed method can effectively measure the average flow velocity of the fluid.When the fluid level of the pipeline is between 50%and 100%,the relative error is less than 3.5%.
基金supported by the National Key R&D Program of China(Grant No.2022YFE0128300).
文摘The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system.
文摘Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The performance of the configurations is evaluated by comparing the open-circuit voltage, the short-circuit current, the maximum power point (MPP), the voltage and current corresponding to MPP, and the Fill Factor (FF). The variations of the series resistance and the shunt resistance of a PV module under different irradiance levels are also determined by considering the effect of thermal voltage. Finally, a comparison between the performance losses in the different configurations is presented. The results of this study show that the parallel configuration has the best performance under the conditions of partial shade in the context of this work.