Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase diffe...Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.展开更多
In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula...In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.展开更多
Tight focusing properties of partially coherent radially polarized vortex beams are studied based on vectorial Debye theory.We focus on the focal properties including the intensity and the partially coherent and polar...Tight focusing properties of partially coherent radially polarized vortex beams are studied based on vectorial Debye theory.We focus on the focal properties including the intensity and the partially coherent and polarized properties of such partially coherent vortex beams through a high numerical aperture objective. It is found that the source coherence length and the maximal numerical aperture angle have direct influence on the focal intensity,as well as coherence and polarization properties.This research is important in optical micromanipulation and beam shaping.展开更多
Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realizati...Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60977068)the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(Grant No.SKLST200912)the Overseas Chinese Affairs Office of the State Council(Grant No.lOQZROl)
文摘Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11504286)the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-470)+1 种基金the Fund from the International Technology Collaborative Center for Advanced Optical Manufacturing and Optoelectronic Measurementthe Science Fund from the Shaanxi Provincial Key Laboratory of Photoelectric Measurement and Instrument Technology.
文摘In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
基金supported by the Natural Science Foundation of China(No.60877068)the Plan Project of Science and Technology of Guangzhou City(No.2007J1- C0011)the Technology Project of Guangdong Province(No.2007B010200041).
文摘Tight focusing properties of partially coherent radially polarized vortex beams are studied based on vectorial Debye theory.We focus on the focal properties including the intensity and the partially coherent and polarized properties of such partially coherent vortex beams through a high numerical aperture objective. It is found that the source coherence length and the maximal numerical aperture angle have direct influence on the focal intensity,as well as coherence and polarization properties.This research is important in optical micromanipulation and beam shaping.
基金supported by the National Natural Science Foundation of China (60736001)
文摘Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.