A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the...A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.展开更多
This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior ...This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior of specimen beams. The test results indicate that: the cracking load,yielding load,peak load and stiffness postcracking of specimen beams are enhanced by reducing prestressing tendon depth or increasing prestressing tendon area, and the flexural ductility is improved by increasing prestressing tendon depth or reducing prestressing tendon area. The effect of complex reinforcement index considering the strength of the equivalence principle and the reinforcement position on loading levels under serviceability limit state,flexural strength and displacement ductility factor are studied. The influence coefficient of prestressing tendon kpis introduced in the complex reinforcement index. As the complex reinforcement index increases, the loading levels under serviceability limit state and flexural strength increases linearly,and the displacement ductility factor decreases linearly. The test results also verify the conventional beam flexural theory based on the plane cross-section assumption for predicting ultimate flexural strength of partially prestressed ultra-high strength concrete beams is valid. After the introduction of the coefficient kp,the calculation method of cracks in code for design of concrete structure in china are appropriated for the specimen beams.展开更多
T he ductility of partially prestressed concrete structure can take the full advan tage of material's largest potential energy, and make people design structures all the better. An important consideration of duct...T he ductility of partially prestressed concrete structure can take the full advan tage of material's largest potential energy, and make people design structures all the better. An important consideration of ductility analysis is to find out the moment-curvature relationship of partially prestressed concrete member sect ion, which has been derived in this paper.展开更多
According to the experimental results of model beams, the curvature of a partially prestressed concrete beam is defined, then the influence of PPR(partial prestressing ratio), net reinforcement index, concrete streng...According to the experimental results of model beams, the curvature of a partially prestressed concrete beam is defined, then the influence of PPR(partial prestressing ratio), net reinforcement index, concrete strength and fatigue on ductility of partially prestressed concrete beam are discussed respectively.展开更多
Like reinforced concrete (RC) structure, Prestressed concrete (PC) structures cannot escape from corrosion related problems, especially when they are subjected to very aggressive environment, such as chloride envi...Like reinforced concrete (RC) structure, Prestressed concrete (PC) structures cannot escape from corrosion related problems, especially when they are subjected to very aggressive environment, such as chloride environment. The corrosion of PC and RC structures can take place if the concrete quality is not adequate, the concrete cover is less than that specified in the design, poor detailing during design and construction. For RC structures, corrosion in the reinforcing steel generally leads to serviceability problems (staining, cracking and spalling of concrete). By contrast, for PC structures, corrosion of prestressing strands may initiate structural collapse due to higher stress levels in the steel and smaller diameter of the prestressing steel. Research on corrosion effect on concrete structure has mainly considered the effect of corrosion have on reinforced and full prestressed concrete structure. In this study, a structural framework will be developed to predict the flexural strength of partial prestressed concrete structures in a chloride environment. The corrosion model previously developed for reinforced and prestressed concrete structures will be combined to predict the effect of corrosion has on partial prestressed concrete structures. Note that in partial prestressed concrete structures, both non prestressing steel (passive) and prestressing (active) reinforcement are utilized to carry the load. The framework developed will be combined with probability analysis to take into account the variability of parameters influencing the corrosion process. This approach allows more accurate prediction of service life of partial prestressed concrete structures in a chloride environment.展开更多
文摘A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50878037,51078059,51178078)
文摘This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior of specimen beams. The test results indicate that: the cracking load,yielding load,peak load and stiffness postcracking of specimen beams are enhanced by reducing prestressing tendon depth or increasing prestressing tendon area, and the flexural ductility is improved by increasing prestressing tendon depth or reducing prestressing tendon area. The effect of complex reinforcement index considering the strength of the equivalence principle and the reinforcement position on loading levels under serviceability limit state,flexural strength and displacement ductility factor are studied. The influence coefficient of prestressing tendon kpis introduced in the complex reinforcement index. As the complex reinforcement index increases, the loading levels under serviceability limit state and flexural strength increases linearly,and the displacement ductility factor decreases linearly. The test results also verify the conventional beam flexural theory based on the plane cross-section assumption for predicting ultimate flexural strength of partially prestressed ultra-high strength concrete beams is valid. After the introduction of the coefficient kp,the calculation method of cracks in code for design of concrete structure in china are appropriated for the specimen beams.
文摘T he ductility of partially prestressed concrete structure can take the full advan tage of material's largest potential energy, and make people design structures all the better. An important consideration of ductility analysis is to find out the moment-curvature relationship of partially prestressed concrete member sect ion, which has been derived in this paper.
文摘According to the experimental results of model beams, the curvature of a partially prestressed concrete beam is defined, then the influence of PPR(partial prestressing ratio), net reinforcement index, concrete strength and fatigue on ductility of partially prestressed concrete beam are discussed respectively.
文摘Like reinforced concrete (RC) structure, Prestressed concrete (PC) structures cannot escape from corrosion related problems, especially when they are subjected to very aggressive environment, such as chloride environment. The corrosion of PC and RC structures can take place if the concrete quality is not adequate, the concrete cover is less than that specified in the design, poor detailing during design and construction. For RC structures, corrosion in the reinforcing steel generally leads to serviceability problems (staining, cracking and spalling of concrete). By contrast, for PC structures, corrosion of prestressing strands may initiate structural collapse due to higher stress levels in the steel and smaller diameter of the prestressing steel. Research on corrosion effect on concrete structure has mainly considered the effect of corrosion have on reinforced and full prestressed concrete structure. In this study, a structural framework will be developed to predict the flexural strength of partial prestressed concrete structures in a chloride environment. The corrosion model previously developed for reinforced and prestressed concrete structures will be combined to predict the effect of corrosion has on partial prestressed concrete structures. Note that in partial prestressed concrete structures, both non prestressing steel (passive) and prestressing (active) reinforcement are utilized to carry the load. The framework developed will be combined with probability analysis to take into account the variability of parameters influencing the corrosion process. This approach allows more accurate prediction of service life of partial prestressed concrete structures in a chloride environment.