Rendering translucent materials is costly:light transport algorithms need to simulate a large number of scattering events inside the material before reaching convergence.The cost is especially high for materials with ...Rendering translucent materials is costly:light transport algorithms need to simulate a large number of scattering events inside the material before reaching convergence.The cost is especially high for materials with a large albedo or a small mean-freepath,where higher-order scattering effects dominate.In simple terms,the paths get lost in the medium.Path guiding has been proposed for surface rendering to make convergence faster by guiding the sampling process.In this paper,we introduce a path guiding solution for translucent materials.We learn an adaptive approximate representation of the radiance distribution in the volume and use it to sample the scattering direction,combining it with phase function sampling by resampled importance sampling.The proposed method significantly improves the performance of light transport simulation in participating media,especially for small lights and media with refractive boundaries.Our method can handle any homogeneous participating medium,with high or low scattering,with high or low absorption,and from isotropic to highly anisotropic.展开更多
A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiat...A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiation pyrometers, and solved by integral formulation of discrete ordinate method on spectral waveband. The influence of water mist on the indicated temperature of Raytek MR1SB one/two color pyrometer was discussed. Mie theory was used to calculate the radiative properties of water mist. In order to verify the model, a laboratory temperature measurement experiment was executed. The result shows that temperature of radiation thermometry is sensitive to the spectral response wavelength of pyrometer, and the simulated temperature of pyrometer agrees well with the experimental measurements on a suitable wavelength. The simulated temperature was lower than the real temperature of surface for one-color pyrometer, and it could be higher or lower than the real one for two-color pyrometer with the influence of participating media.展开更多
Participating media are frequent in real-world scenes,whether they contain milk,fruit juice,oil,or muddy water in a river or the ocean.Incoming light interacts with these participating media in complex ways:refraction...Participating media are frequent in real-world scenes,whether they contain milk,fruit juice,oil,or muddy water in a river or the ocean.Incoming light interacts with these participating media in complex ways:refraction at boundaries and scattering and absorption inside volumes.The radiative transfer equation is the key to solving this problem.There are several categories of rendering methods which are all based on this equation,but using different solutions.In this paper,we introduce these groups,which include volume density estimation based approaches,virtual point/ray/beam lights,point based approaches,Monte Carlo based approaches,acceleration techniques,accurate single scattering methods,neural network based methods,and spatially-correlated participating media related methods.As well as discussing these methods,we consider the challenges and open problems in this research area.展开更多
We consider the scattering of light in participating media composed of sparsely and randomly distributed discrete particles.The particle size is expected to range from the scale of the wavelength to several orders of ...We consider the scattering of light in participating media composed of sparsely and randomly distributed discrete particles.The particle size is expected to range from the scale of the wavelength to several orders of magnitude greater,resulting in an appearance with distinct graininess as opposed to the smooth appearance of continuous media.One fundamental issue in the physically-based synthesis of such appearance is to determine the necessary optical properties in every local region.Since these properties vary spatially,we resort to geometrical optics approximation(GOA),a highly efficient alternative to rigorous Lorenz–Mie theory,to quantitatively represent the scattering of a single particle.This enables us to quickly compute bulk optical properties for any particle size distribution.We then use a practical Monte Carlo rendering solution to solve energy transfer in the discrete participating media.Our proposed framework is the first to simulate a wide range of discrete participating media with different levels of graininess,converging to the continuous media case as the particle concentration increases.展开更多
The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could a...The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could act as a radiative cooler or as a thermal insulator depending on the need. This versatile usage would thus decrease the need for traditional air-conditioning and hence save electricity. The skylight would consist of one normal silica glass window and of two polymer windows with a grcenhousc gas trapped in the spaces between the windows. The skylight would be in its cooling mode when the two spaces would be connected to each other and insulating when disconnected. Thus when cooling, a natural convective flow transports heat from the 1o~ er part of the skylight to the upper part of the skylight where the greenhouse gas is cooled by radiative heat exchange with the sky.展开更多
Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply p...Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.展开更多
The boundary emissivity, thermal conductivity, and boundary time-varying heat flux in the participating media are retrieved in this work. In the forward model, the coupled radiation-conduction heat transfer in the par...The boundary emissivity, thermal conductivity, and boundary time-varying heat flux in the participating media are retrieved in this work. In the forward model, the coupled radiation-conduction heat transfer in the participating medium is resolved by the finite volume method combined with discrete ordinates method. The inverse model utilizes the temperature signals at the appropriate position of the medium as the known information and uses the unscented Kalman filter(UKF) as an optimization tool to reconstruct the boundary emissivity, thermal conductivity, and boundary time-varying heat flux. It is found that when the emissivity, thermal conductivity, and boundary time-varying heat flux are reconstructed simultaneously, only the temperature information of two locations is required. The influence of the measurement noise, sampling interval, absorption coefficient,process noise covariance, measurement noise covariance on the accuracy and stability of the retrieval results is investigated in detail. All the reconstruction results indicate that the UKF technique is effective and robust for estimating the photothermal parameters and boundary condition of the radiation-conduction heat transfer problems.展开更多
基金partially supported by the NationalKey R&D Program of China under Grant No.2017YFB0203000the National Natural Science Foundation of China under Grant Nos.61802187 and 61872223+2 种基金the Natural Science Foundation of Jiangsu under Grant No.BK20170857the fundamental research funds for the central universities No.30918011320ANR project ANR-15-CE380005“Materials”.
文摘Rendering translucent materials is costly:light transport algorithms need to simulate a large number of scattering events inside the material before reaching convergence.The cost is especially high for materials with a large albedo or a small mean-freepath,where higher-order scattering effects dominate.In simple terms,the paths get lost in the medium.Path guiding has been proposed for surface rendering to make convergence faster by guiding the sampling process.In this paper,we introduce a path guiding solution for translucent materials.We learn an adaptive approximate representation of the radiance distribution in the volume and use it to sample the scattering direction,combining it with phase function sampling by resampled importance sampling.The proposed method significantly improves the performance of light transport simulation in participating media,especially for small lights and media with refractive boundaries.Our method can handle any homogeneous participating medium,with high or low scattering,with high or low absorption,and from isotropic to highly anisotropic.
基金The support of this work by the National Natural Science Foundation of China under Grant No.50074006 is gratefully acknowledged.
文摘A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiation pyrometers, and solved by integral formulation of discrete ordinate method on spectral waveband. The influence of water mist on the indicated temperature of Raytek MR1SB one/two color pyrometer was discussed. Mie theory was used to calculate the radiative properties of water mist. In order to verify the model, a laboratory temperature measurement experiment was executed. The result shows that temperature of radiation thermometry is sensitive to the spectral response wavelength of pyrometer, and the simulated temperature of pyrometer agrees well with the experimental measurements on a suitable wavelength. The simulated temperature was lower than the real temperature of surface for one-color pyrometer, and it could be higher or lower than the real one for two-color pyrometer with the influence of participating media.
文摘Participating media are frequent in real-world scenes,whether they contain milk,fruit juice,oil,or muddy water in a river or the ocean.Incoming light interacts with these participating media in complex ways:refraction at boundaries and scattering and absorption inside volumes.The radiative transfer equation is the key to solving this problem.There are several categories of rendering methods which are all based on this equation,but using different solutions.In this paper,we introduce these groups,which include volume density estimation based approaches,virtual point/ray/beam lights,point based approaches,Monte Carlo based approaches,acceleration techniques,accurate single scattering methods,neural network based methods,and spatially-correlated participating media related methods.As well as discussing these methods,we consider the challenges and open problems in this research area.
基金National Natural Science Foundation of China(Grant Nos.61972194 and 62032011)。
文摘We consider the scattering of light in participating media composed of sparsely and randomly distributed discrete particles.The particle size is expected to range from the scale of the wavelength to several orders of magnitude greater,resulting in an appearance with distinct graininess as opposed to the smooth appearance of continuous media.One fundamental issue in the physically-based synthesis of such appearance is to determine the necessary optical properties in every local region.Since these properties vary spatially,we resort to geometrical optics approximation(GOA),a highly efficient alternative to rigorous Lorenz–Mie theory,to quantitatively represent the scattering of a single particle.This enables us to quickly compute bulk optical properties for any particle size distribution.We then use a practical Monte Carlo rendering solution to solve energy transfer in the discrete participating media.Our proposed framework is the first to simulate a wide range of discrete participating media with different levels of graininess,converging to the continuous media case as the particle concentration increases.
文摘The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could act as a radiative cooler or as a thermal insulator depending on the need. This versatile usage would thus decrease the need for traditional air-conditioning and hence save electricity. The skylight would consist of one normal silica glass window and of two polymer windows with a grcenhousc gas trapped in the spaces between the windows. The skylight would be in its cooling mode when the two spaces would be connected to each other and insulating when disconnected. Thus when cooling, a natural convective flow transports heat from the 1o~ er part of the skylight to the upper part of the skylight where the greenhouse gas is cooled by radiative heat exchange with the sky.
文摘Normal skylights bring light into the spaces located below them. By the use of IR (infrared radiation) transmissive polymer films and IR-emitting and absorbing gases, an advanced version of the skylight may supply passive cooling and thermal insulation to the room located below it. This novel radiative skylight can, in its cooling mode, lead heat from the room below, to the cool skies located above the skylight. When cooling is no longer needed or attainable, the skylight will in its cooling mode provide the room with an optimal amount of thermal resistance. This article is a progress reporting on the modeling of the skylight. The main work is done to combine the different heat transfer methods into one single model by the use of the commercial program Comsol 4.1. The results show that a cooling effect of 100 W/ma is achievable when the skylight is compared with a similar skylight containing only air.
基金supported by the National Natural Science Foundation of China(Grant Nos.51976044 and 51806047)
文摘The boundary emissivity, thermal conductivity, and boundary time-varying heat flux in the participating media are retrieved in this work. In the forward model, the coupled radiation-conduction heat transfer in the participating medium is resolved by the finite volume method combined with discrete ordinates method. The inverse model utilizes the temperature signals at the appropriate position of the medium as the known information and uses the unscented Kalman filter(UKF) as an optimization tool to reconstruct the boundary emissivity, thermal conductivity, and boundary time-varying heat flux. It is found that when the emissivity, thermal conductivity, and boundary time-varying heat flux are reconstructed simultaneously, only the temperature information of two locations is required. The influence of the measurement noise, sampling interval, absorption coefficient,process noise covariance, measurement noise covariance on the accuracy and stability of the retrieval results is investigated in detail. All the reconstruction results indicate that the UKF technique is effective and robust for estimating the photothermal parameters and boundary condition of the radiation-conduction heat transfer problems.