To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed freq...To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations.展开更多
When nano-fillers are used to enhance the thermal conductivity of organic phase change materials(PCMs),the naturally formed interface is considered to hinder thermal transport of the composite PCMs.However,the effect ...When nano-fillers are used to enhance the thermal conductivity of organic phase change materials(PCMs),the naturally formed interface is considered to hinder thermal transport of the composite PCMs.However,the effect of the interface on the thermal properties of surrounding PCM has not been fully studied.In this paper,three composite PCMs(Ery@SiC,Ery@SiO_(2) and Ery@Si_(3)N_(4))were prepared by melt-blending method.The local thermal conductivity and reduced Young’s modulus(E^(*))of the erythritol at the interface and far away from the interface in the composite PCMs were simultaneously measured by scanning thermal microscopy(SThM).The results revealed significant enhancement in local thermal conductivity of erythritol at the interface and its obvious positive correlation with E^(*).For different composite PCMs,molecular dynamics(MD)simulations suggested that the increase in intrinsic thermal conductivity and E^(*)of erythritol is attributed to the increase in interaction energy between erythritol and nanoparticles,as more erythritol phonon vibrations transform from localized mode to delocalized mode and erythritol has a higher density at the interface.These findings will provide new ideas for the design of PCM for energy storage.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50478031)China Postdoctoral Science Foundation(Grant No.2006040240)
文摘To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations.
基金supported by the National Key R&D Program of China(No.2023YFF0612804)the National Natural Science Foundation of China(Nos.52222602,52236006,and 22293043)+3 种基金Beijing Nova Program(No.20220484170)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-001C1 and FRF-EYIT-23-05)Foundation of the Youth Innovation Promotion Association of CAS(No.2020048)IPE Project for Frontier Basic Research(No.QYJC-2023-08).
文摘When nano-fillers are used to enhance the thermal conductivity of organic phase change materials(PCMs),the naturally formed interface is considered to hinder thermal transport of the composite PCMs.However,the effect of the interface on the thermal properties of surrounding PCM has not been fully studied.In this paper,three composite PCMs(Ery@SiC,Ery@SiO_(2) and Ery@Si_(3)N_(4))were prepared by melt-blending method.The local thermal conductivity and reduced Young’s modulus(E^(*))of the erythritol at the interface and far away from the interface in the composite PCMs were simultaneously measured by scanning thermal microscopy(SThM).The results revealed significant enhancement in local thermal conductivity of erythritol at the interface and its obvious positive correlation with E^(*).For different composite PCMs,molecular dynamics(MD)simulations suggested that the increase in intrinsic thermal conductivity and E^(*)of erythritol is attributed to the increase in interaction energy between erythritol and nanoparticles,as more erythritol phonon vibrations transform from localized mode to delocalized mode and erythritol has a higher density at the interface.These findings will provide new ideas for the design of PCM for energy storage.