Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
Recent vacuum system development with an XHV condition for the particle accelerators is briefly described. The progress of selecting and treatment of the materials used in XHV systems is introduced,and the choice of t...Recent vacuum system development with an XHV condition for the particle accelerators is briefly described. The progress of selecting and treatment of the materials used in XHV systems is introduced,and the choice of the main pump for an XHV system and some new pumping method are presented.Some leak detection experiences both for the superconducting and warm vacuum systems are recommended and the status of XHV measurement and the gauge calibration are introduced.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energeti...Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned Out to be about 2 rain later than the onset time of the interplanetary type HI burst.展开更多
The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The accel...The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.展开更多
In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency s...In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.展开更多
Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a die...Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.展开更多
We suggest a scheme of electron acceleration by use of two tightly focused ultra-short intense laser pulses at a IOOTW level. Electroas obtain a preliminary acceleration with a small angular spread by the longitudinal...We suggest a scheme of electron acceleration by use of two tightly focused ultra-short intense laser pulses at a IOOTW level. Electroas obtain a preliminary acceleration with a small angular spread by the longitudinal ponderomotive force of the first pulse. They are then injected and further accelerated to hundreds of MeV by the second laser pulse.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
In this paper,we propose a novel stacked laser dielectric acceleration structure.This structure is based on the inverse Cherenkov effect and represented by a parametric design formulation.Compared to existing dielectr...In this paper,we propose a novel stacked laser dielectric acceleration structure.This structure is based on the inverse Cherenkov effect and represented by a parametric design formulation.Compared to existing dielectric laser accelerators relying on the inverse Smith–Purcell effect,the proposed structure provides an extended-duration synchronous acceleration field without requiring the pulse front tilting technique.This advantage significantly reduces the required pulse duration.In addition,the easy to integrate layered structure facilitates cascade acceleration,and simulations have shown that low-energy electron beams can be cascaded through high gradients over extended distances.These practical advantages demonstrate the potential of this new structure for future chip accelerators.展开更多
Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent ...Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent differences exist in different groups of the primary CRs. However, it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes(e.g., energy losses and fragmentations) either. In this work, we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system, and ACR-CRIS and AMS-02 on the top of atmosphere, in a physical framework of CR transportation. Two types of injection spectra are assumed, the broken power-law(BPL) form and the non-parametric spline interpolation form. The non-parametric form fits the data better than the BPL form, implying that potential structures beyond the constrained spectral shape of BPL may exist. For different nuclei the injection spectra are overall similar in shape but do show some differences among each other. For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies. For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species, and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R2 d N dRpresentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.展开更多
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based ...Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels.展开更多
33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such appl...33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such applications will be provided. The detector techniques which are specific to non-accelerator particle physics experiments are the subject of Chap.展开更多
The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which...The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.展开更多
Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, t...Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, the mechanism for the production of anomalous resistivity and its evolution is still an open question. We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its non- linear characteristics. Our principal findings are summarized as follows: 1) the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax=0.03724(vd/ve)^5.702Ωm for vd/ve in the range of 1.4-2.0 and ηmax=0.8746(vd/ve)^1.284Ωm for vd/ve in the range of 2.5-4.5;2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability, the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions, With the increase of drift velocity from 1.4ve to 4.5Ve, the anomalous resistivity continues to increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves, the anomalous resistivity decreases at least about one order as com- pared with its peak value; 4) considering that the final velocity of electrons ejected out of the reconnecting current sheet (RCS) decreases with the distance from the neutral point in the neutral plane, the anomalous resistivity decreases with the distance from the neutral point, which is favorable for the Petschek-like reconnection to take place.展开更多
The early acceleration of protons and electrons in the nonrelativistic collisionless shocks with three obliquities are investigated through 1D particle-in-cell simulations. In the simulations, the charged particles po...The early acceleration of protons and electrons in the nonrelativistic collisionless shocks with three obliquities are investigated through 1D particle-in-cell simulations. In the simulations, the charged particles possessing a velocity of 0.2c flow towards a reflecting boundary, and the shocks with a sonic Mach number of 13.4 and an Alfven Mach number of 16.5 in the downstream shock frame are generated.In these quasi-parallel shocks with the obliquity angles θ = 15°, 30° and 45°, some of the protons and the electrons can be injected into the acceleration processes, and their downstream spectra in the momentum space show a power law tail at a time of 1.89 × 10^5ω^-1pe, where ωpe is the electron plasma frequency.Moreover, the charged particles reflected at the shock excite magnetic waves upstream of the shock. The shock drift acceleration is more prominent with a larger obliquity angle for the shocks, but the accelerated particles diffuse parallel to the shock propagation direction more easily to participate in the diffusive shock acceleration. In the early acceleration stage, more energetic protons and electrons appear in the downstream of the shock for θ = 15° compared with the other two obliquities. Moreover, in the upstream region, the spectrum of the accelerated electrons is the hardest for θnB = 45° among the three obliquities, whereas the proton spectra for θnB = 15° and 45° are similar as a result of the competition of the effectiveness of the shock drift acceleration and the diffusive shock acceleration.展开更多
Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earli...Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.展开更多
It is surprising to find an instance of migration in the peak positions of synchrotron spectral energy distribution components during the activity epochs of Markarian 421(Mrk 421),accompanying an orphan flare at the X...It is surprising to find an instance of migration in the peak positions of synchrotron spectral energy distribution components during the activity epochs of Markarian 421(Mrk 421),accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands.A geometric interpretation and standard shock or stochastic acceleration models of blazar emission have difficulty reproducing these observed behaviors.The present paper introduces a linear acceleration by integrating the reconnection electric field into the particle transport model for the observed behaviors of Mrk 421.We note that strong evidence for evolution in characteristic of multi-wavelength spectral energy distribution including shifting the peak frequency,accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands provides an important electrostatic acceleration diagnostic in a blazar jet.Assuming suitable model parameters,we apply the results of the simulation to the 13-day flaring event in March 2010 of Mrk 421,concentrating on the evolution of multiwavelength spectral energy distribution characteristic by shifting the peak frequency.It is clear that the ratio of the electric field and magnetic field strength plays an important role in temporal evolution of the peak frequency of synchrotron spectral energy distribution component.We suggest it is reasonable that the electrostatic acceleration is responsible for the evolution of multi-wavelength spectral energy distribution characteristic by shifting the peak frequency.Based on the model results,we assert that the peak frequency of the synchrotron spectral energy distribution component may signify a temporary characteristic of blazars,rather than a permanent one.展开更多
The growing observed evidence shows that the long-and short-duration gamma-ray bursts(GRBs) originate from massive star core-collapse and the merger of compact stars,respectively.GRB 201221 D is a short-duration GRB l...The growing observed evidence shows that the long-and short-duration gamma-ray bursts(GRBs) originate from massive star core-collapse and the merger of compact stars,respectively.GRB 201221 D is a short-duration GRB lasting~0.1 s without extended emission at high redshift z=1.046.By analyzing data observed with the Swift/BAT and Fermi/GBM,we find that a cutoff power-law model can adequately fit the spectrum with a soft E=113keV,and isotropic energy E=1.36× 10erg.In order to reveal the possible physical origin of GRB 201221 D,we adopted multi-wavelength criteria(e.g.,Amati relation,ε-parameter,amplitude parameter,local event rate density,luminosity function,and properties of the host galaxy),and find that most of the observations of GRB 201221 D favor a compact star merger origin.Moreover,we find that α is larger than 2+βin the prompt emission phase which suggests that the emission region is possibly undergoing acceleration during the prompt emission phase with a Poynting-flux-dominated jet.展开更多
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
文摘Recent vacuum system development with an XHV condition for the particle accelerators is briefly described. The progress of selecting and treatment of the materials used in XHV systems is introduced,and the choice of the main pump for an XHV system and some new pumping method are presented.Some leak detection experiences both for the superconducting and warm vacuum systems are recommended and the status of XHV measurement and the gauge calibration are introduced.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金Supported by the National Natural Science Foundation of China.
文摘Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned Out to be about 2 rain later than the onset time of the interplanetary type HI burst.
基金supported by National Natural Science Foundation of China(Nos.51275029,51102007 and 11275007)
文摘The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.
文摘In this paper, we address one of the issues in the frequency assignment problem for cellular mobile networks in which we intend to minimize the interference levels when assigning frequencies from a limited frequency spectrum. In order to satisfy the increasing demand in such cellular mobile networks, we use a hybrid approach consisting of a Particle Swarm Optimization(PSO) combined with a Tabu Search(TS) algorithm. This approach takes both advantages of PSO efficiency in global optimization and TS in avoiding the premature convergence that would lead PSO to stagnate in a local minimum. Moreover, we propose a new efficient, simple, and inexpensive model for storing and evaluating solution's assignment. The purpose of this model reduces the solution's storage volume as well as the computations required to evaluate thesesolutions in comparison with the classical model. Our simulation results on the most known benchmarking instances prove the effectiveness of our proposed algorithm in comparison with previous related works in terms of convergence rate, the number of iterations, the solution storage volume and the running time required to converge to the optimal solution.
基金the National Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12174350)Key Laboratory Foundation of The Sciences and Technology on Plasma Physics Laboratory(No.6142A04200103)Independent scientific research(No.JCKYS2021212011).
文摘Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10335020, 10105014 and 10390160), the National High Technology Inertial Confinement Fusion Foundation of China, and the National Key Basic Research Special Foundation of China (Grant No G1999075200).
文摘We suggest a scheme of electron acceleration by use of two tightly focused ultra-short intense laser pulses at a IOOTW level. Electroas obtain a preliminary acceleration with a small angular spread by the longitudinal ponderomotive force of the first pulse. They are then injected and further accelerated to hundreds of MeV by the second laser pulse.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
基金the National Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,and 12174350)Key Laboratory Foundation of the Sciences and Technology on Plasma Physics Laboratory(No.6142A04200103)Independent Scientific Research(No.JCKYS2021212011).
文摘In this paper,we propose a novel stacked laser dielectric acceleration structure.This structure is based on the inverse Cherenkov effect and represented by a parametric design formulation.Compared to existing dielectric laser accelerators relying on the inverse Smith–Purcell effect,the proposed structure provides an extended-duration synchronous acceleration field without requiring the pulse front tilting technique.This advantage significantly reduces the required pulse duration.In addition,the easy to integrate layered structure facilitates cascade acceleration,and simulations have shown that low-energy electron beams can be cascaded through high gradients over extended distances.These practical advantages demonstrate the potential of this new structure for future chip accelerators.
基金supported by the National Key Research and Development Program of China(No. 2021YFA0718404)the National Natural Science Foundation of China (No. 12220101003)the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No. YSBR-061)。
文摘Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent differences exist in different groups of the primary CRs. However, it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes(e.g., energy losses and fragmentations) either. In this work, we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system, and ACR-CRIS and AMS-02 on the top of atmosphere, in a physical framework of CR transportation. Two types of injection spectra are assumed, the broken power-law(BPL) form and the non-parametric spline interpolation form. The non-parametric form fits the data better than the BPL form, implying that potential structures beyond the constrained spectral shape of BPL may exist. For different nuclei the injection spectra are overall similar in shape but do show some differences among each other. For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies. For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species, and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R2 d N dRpresentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.
基金National Natural Science Foundation of China under Grant No.51678499。
文摘Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels.
文摘33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such applications will be provided. The detector techniques which are specific to non-accelerator particle physics experiments are the subject of Chap.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.40904046,40874075 and 40525014)the 973 National Basic Research Program(2006CB806304)+2 种基金the Ministry of Education of China(200530)the Program for New Century Excellent Talents in University(NCET-08-0524)the Chinese Academy of Sciences(KZCX2-YW-QN511, KJCX2-YW-N28 and the startup fund)
文摘The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.
基金supported by the National Natural Science Foundation of China(Grant Nos.10773032,10833007 and 11073006)the "973" program(No.2006CB806302)
文摘Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, the mechanism for the production of anomalous resistivity and its evolution is still an open question. We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its non- linear characteristics. Our principal findings are summarized as follows: 1) the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax=0.03724(vd/ve)^5.702Ωm for vd/ve in the range of 1.4-2.0 and ηmax=0.8746(vd/ve)^1.284Ωm for vd/ve in the range of 2.5-4.5;2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability, the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions, With the increase of drift velocity from 1.4ve to 4.5Ve, the anomalous resistivity continues to increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves, the anomalous resistivity decreases at least about one order as com- pared with its peak value; 4) considering that the final velocity of electrons ejected out of the reconnecting current sheet (RCS) decreases with the distance from the neutral point in the neutral plane, the anomalous resistivity decreases with the distance from the neutral point, which is favorable for the Petschek-like reconnection to take place.
基金partially supported by the National Key R&D Program of China (2018YFA0404204)the National Natural Science Foundation of China (11873042 and 11563009)+5 种基金the Yunnan Applied Basic Research Projects (2016FB001 and 2018FY001(-003))partially supported by the Yunnan Applied Basic Research Projects (2016FD105)the Candidate Talents Training Fund of Yunnan Province (2017HB003)the Program for Excellent Young Talents, Yunnan University (WX069051 and 2017YDYQ01)the foundations of Yunnan Province (2016ZZX180 and 2016DG006)Kunming University (YJL15004 and XJL15015)
文摘The early acceleration of protons and electrons in the nonrelativistic collisionless shocks with three obliquities are investigated through 1D particle-in-cell simulations. In the simulations, the charged particles possessing a velocity of 0.2c flow towards a reflecting boundary, and the shocks with a sonic Mach number of 13.4 and an Alfven Mach number of 16.5 in the downstream shock frame are generated.In these quasi-parallel shocks with the obliquity angles θ = 15°, 30° and 45°, some of the protons and the electrons can be injected into the acceleration processes, and their downstream spectra in the momentum space show a power law tail at a time of 1.89 × 10^5ω^-1pe, where ωpe is the electron plasma frequency.Moreover, the charged particles reflected at the shock excite magnetic waves upstream of the shock. The shock drift acceleration is more prominent with a larger obliquity angle for the shocks, but the accelerated particles diffuse parallel to the shock propagation direction more easily to participate in the diffusive shock acceleration. In the early acceleration stage, more energetic protons and electrons appear in the downstream of the shock for θ = 15° compared with the other two obliquities. Moreover, in the upstream region, the spectrum of the accelerated electrons is the hardest for θnB = 45° among the three obliquities, whereas the proton spectra for θnB = 15° and 45° are similar as a result of the competition of the effectiveness of the shock drift acceleration and the diffusive shock acceleration.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11790303 41774180, 11703017 and 11873036)the Major International Joint Research Project (11820101002) of NSFCsupport from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology+2 种基金the Young Scholars Program of Shandong University, Weihaithe Joint Research Fund in Astronomy (U1631242 and U1731241) under the cooperative agreement between NSFC and CASthe “Thousand Young Talents Plan”
文摘Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.
基金the National Natural Science Foundation of China(Grant Nos.11673060,11763005,11873043 and 11991051)the Specialized Research Fund for Shandong Provincial Key Laboratory(Grant No.KLWH201804)the Research Foundation for Scientific Elitists of the Department of Education of Guizhou Province(Grant No.QJHKYZ[2018]068)。
文摘It is surprising to find an instance of migration in the peak positions of synchrotron spectral energy distribution components during the activity epochs of Markarian 421(Mrk 421),accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands.A geometric interpretation and standard shock or stochastic acceleration models of blazar emission have difficulty reproducing these observed behaviors.The present paper introduces a linear acceleration by integrating the reconnection electric field into the particle transport model for the observed behaviors of Mrk 421.We note that strong evidence for evolution in characteristic of multi-wavelength spectral energy distribution including shifting the peak frequency,accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands provides an important electrostatic acceleration diagnostic in a blazar jet.Assuming suitable model parameters,we apply the results of the simulation to the 13-day flaring event in March 2010 of Mrk 421,concentrating on the evolution of multiwavelength spectral energy distribution characteristic by shifting the peak frequency.It is clear that the ratio of the electric field and magnetic field strength plays an important role in temporal evolution of the peak frequency of synchrotron spectral energy distribution component.We suggest it is reasonable that the electrostatic acceleration is responsible for the evolution of multi-wavelength spectral energy distribution characteristic by shifting the peak frequency.Based on the model results,we assert that the peak frequency of the synchrotron spectral energy distribution component may signify a temporary characteristic of blazars,rather than a permanent one.
基金supported by the National Natural Science Foundation of China (grant Nos. 11922301 and 12133003)the Guangxi Science Foundation (grant Nos. 2017GXNSFFA198008 and AD17129006)+6 种基金support by the Program of Bagui Young Scholars Program, and special funding for Guangxi distinguished professors (Bagui Yingcai & Bagui Xuezhe)support by the National Key Research and Development Programs of China (2018YFA0404204)the National Natural Science Foundation of China (grant Nos. 11833003 and U2038105)the Program for Innovative Talents, Entrepreneur in Jiangsusupport by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant Nos. XDA15310300, XDA15052100 and XDB23040000)support by the National Natural Science Foundation of China (grant Nos. 12041306 and 12103089)the Natural Science Foundation of Jiangsu Province (grant No. BK20211000)。
文摘The growing observed evidence shows that the long-and short-duration gamma-ray bursts(GRBs) originate from massive star core-collapse and the merger of compact stars,respectively.GRB 201221 D is a short-duration GRB lasting~0.1 s without extended emission at high redshift z=1.046.By analyzing data observed with the Swift/BAT and Fermi/GBM,we find that a cutoff power-law model can adequately fit the spectrum with a soft E=113keV,and isotropic energy E=1.36× 10erg.In order to reveal the possible physical origin of GRB 201221 D,we adopted multi-wavelength criteria(e.g.,Amati relation,ε-parameter,amplitude parameter,local event rate density,luminosity function,and properties of the host galaxy),and find that most of the observations of GRB 201221 D favor a compact star merger origin.Moreover,we find that α is larger than 2+βin the prompt emission phase which suggests that the emission region is possibly undergoing acceleration during the prompt emission phase with a Poynting-flux-dominated jet.