期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Simulation of random mixed packing of different density particles 被引量:1
1
作者 李元元 夏伟 +3 位作者 周照耀 何克晶 钟文镇 吴苑标 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期336-341,共6页
This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The ... This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing. 展开更多
关键词 mixed packing different densities granular particle discrete element method simulation
下载PDF
A novel hybrid solid-like fluid-like (SLFL) method for the simulation of dry granular flows
2
作者 A. Eslamian M. Khayat 《Particuology》 SCIE EI CAS CSCD 2017年第2期200-219,共20页
This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome t... This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic–perfectly plastic theory based on the Drucker–Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results. 展开更多
关键词 Solid-like Fluid-like granular flow Smoothed particle hydrodynamics Inertial number Cliff collapse
原文传递
Numerical prediction of flow hydrodynamics of wet molecular sieve particles in a liquid-fluidized bed
3
作者 Guodong Liu Peng Wang +4 位作者 Huilin Lu Fan Yu Yanan Zhang Shuai Wang Liyan Sun 《Particuology》 SCIE EI CAS CSCD 2016年第2期42-50,共9页
The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influ... The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings. 展开更多
关键词 Liquid-solid fluidized bed Wet particle collision Kinetic theory of granular flow Restitution coefficient
原文传递
An ISPH model for flow-like landslides and interaction with structures 被引量:2
4
作者 梁东方 Xuzhen He 张景新 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期894-897,共4页
An incompressible smoothed particle hydrodynamics(ISPH) model has been developed to investigate the flow-like landslide phenomena The landslide mass is idealized as rigid and perfectly-plastic material with a consta... An incompressible smoothed particle hydrodynamics(ISPH) model has been developed to investigate the flow-like landslide phenomena The landslide mass is idealized as rigid and perfectly-plastic material with a constant density. Unlike the widely-used explicit smoothed particle hydrodynamics(SPH) models for landslides, the Chorin's projection method is used herein to implicitly solve the normal stress via a pressure Poisson equation, leading to a realistic distribution of instantaneous stress fields free of spurious fluctuations. The capability of the model is demonstrated through three case studies, including the idealized granular flow, landslide interaction with a rigid barrier, and a historical cut-slope landslide in Hong Kong. 展开更多
关键词 Landslides smoothed particle hydrodynamics granular flows meshfree methods
原文传递
Experimental and numerical study of pseudo-2D circulating fluidized beds 被引量:2
5
作者 Adam Klimanek Wojciech Adamczyk +2 位作者 Sirpa Kallio Pawet Kozolub Gabriel Wecel 《Particuology》 SCIE EI CAS CSCD 2016年第6期48-59,共12页
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distri... We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distributions along the wall of the riser were measured, Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler-Euler approach, A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models, 展开更多
关键词 Circulating fluidized bed Euler-Euler approachGas-solid flow Kinetic theory of granular flow particle size distribution 2D vs 3D
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部