It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials...The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.展开更多
Continuous measurement of ambient PM10 was performed by TEOM at a university campus for about one year from 20 November 2007 to 29 October 2008 in Changsha city of Hunan province.Indoor PM10 and PM2.5 concentration we...Continuous measurement of ambient PM10 was performed by TEOM at a university campus for about one year from 20 November 2007 to 29 October 2008 in Changsha city of Hunan province.Indoor PM10 and PM2.5 concentration were measured by DustTrak simultaneously in order to describe the difference in concentration level and daily variations of particle mass concentration between different seasons,and to survey the influence of ambient particle on indoor air quality.During the survey period,the annual average PM10 concentration was found to be 117.63 μg/m3,with a mean value 121.88 μg/m3 in winter and 111.50 μg/m3 in spring.The temporal trend changed quickly from time to time,and the peak values were found in rush hours and in the evening.Ambient PM10 showed a good correlation with indoor PM10 and outdoor PM2.5 but not with indoor PM2.5.These results showed that PM10 was influenced by local source(such as traffic or fuel burning)and regional source.The correlation analysis has shown that ambient PM10 contributes substantial fraction to indoor PM10 but not to indoor PM2.5,which indicates other source may exist in the indoor environment.展开更多
Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle ma...Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.展开更多
Pyrolysis and heat transfer characteristics of single large biomass particle were investigated using threedimensional unsteady heat transfer model coupled with chemical reactions.The consumption of biomass and the pro...Pyrolysis and heat transfer characteristics of single large biomass particle were investigated using threedimensional unsteady heat transfer model coupled with chemical reactions.The consumption of biomass and the production of products were simulated.Some experiments were designed to provide model parameters for simulation calculations.The simulation was verified by pyrolysis experiments of large biomass particle in a vertical tube furnace.The simulation results show the internal heat and mass transfer law during the pyrolysis of large biomass particle.When the biomass particle diameter is between 10 and 30 mm,for every 5 mm increase in particle diameter,the time required for complete pyrolysis will increase on average by about 50 s.When the pyrolysis temperature is between 673 K and 873 K,a slight decrease in the pyrolysis temperature will cause the time required for the biomass to fully pyrolyze to rise significantly.And the phenomenon is more obvious in the low temperature range.The results indicate that the numerical simulation agrees well with the experimental results.展开更多
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment ...Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.展开更多
The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly du...The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly due to insufficient judged measures to reduce road traffic emissions. However, a thorough analysis of the data makes clear that neither the particle mass concentration (PM10 and PM2.5) nor the particle number concentration are specific metrics for evaluating the particle pollution originated by traffic. In fact, increased formation of secondary aerosol, together with adverse meteorological conditions and the (re) suspension of the coarser fraction are by far the three main explanations for the numerous PM10 exceeding values. From our experience, amongst the particles measured, only the results for Black Carbon (BC), mainly present in the lower submicron range, are reflective of the direct influence of local traffic. Measured at two traffic sites along with PM mass and number concentrations, the data for Black Carbon show a striking correlation with nitrogen monoxide, a parameter strongly related with the proximity of the local traffic. The correlation factor between Black Carbon data and NO or NOX is much higher than between Black Carbon and the PM mass or number concentration. Therefore the assessment of traffic related particles should consider Black Carbon rather than PM10 or PM2.5.展开更多
This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for s...This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.展开更多
The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aer...The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aerosol concentration. By using the stability classification method, trajectory clustering analysis and the NOAA HYSPLIT model, the seasonal distribution characteristics of atmospheric inhalable particulate matter concentration in Qingdao, China and its relationship with meteorological conditions, mixed layer height, and the seasonal characteristics of Qingdao pollutant transport were analyzed. The results show that the variation trends of PM2.5 and PM10 were about the same, and there are obvious seasonal differences, which are high in winter and spring, and low in summer and autumn. The concentration of inhalable particulate matter has a negative correlation with temperature, wind speed and relative humidity. The concentration of inhalable particulate matter is distinct in different relative humidity ranges. When the wind speed is less than 3 - 4 m/s, there are more inhalable particles, while the mass concentration shows obvious reduction with the wind speed more than 4 m/s. There is a significant negative correlation between the mass concentration of pollutants and the daily maximum mixed layer height. The larger the concentration of pollutants, the smaller the thickness of the daily largest mixed layer. Conversely, the smaller the mass concentration of pollutants, the larger the thickness of the daily largest mixed layer. The pollutant transport in Qingdao has obvious seasonal characteristics. The air mass in spring, autumn and winter is mainly medium-long distance transport from Mongolia and southern Russia, and medium-short distance transport from Inner Mongolia and northeast of China. The source of air masses in summer is mainly transported from the eastern and sea areas.展开更多
The masses of a l l fundamental elementary particles (those with a lifetime > 10-24 sec) can be calculated with an inaccuracy of approx. 1% using the equation m/melectron = N/2α where α is the coupling constant o...The masses of a l l fundamental elementary particles (those with a lifetime > 10-24 sec) can be calculated with an inaccuracy of approx. 1% using the equation m/melectron = N/2α where α is the coupling constant of quantum electrodynamics (also known as fine structure constant) (= 1/137.036), and N is an integer variable. This is the by far most accurate and most comprehensive approach to calculate the particle masses.展开更多
By using the revision of the momentum for a particle moving with high velocity and by investigating the famous Bucherer's experiment of an electron deflecting with high velocity in the electromagnetic fields in 19...By using the revision of the momentum for a particle moving with high velocity and by investigating the famous Bucherer's experiment of an electron deflecting with high velocity in the electromagnetic fields in 1908, the paper determines that mass of the electron with high velocity is still to observe the law of conservation of mass.展开更多
A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. T...A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. The diameter of the particle is derived from its mass, which is calibrated using the peak area. This is the basic principle of measuring single particles using inductively coupled plasma mass spectrometry (ICP-MS). In this paper, a mathematical model describing single particles in plasma is investigated. This makes it possible to investigate the process and contributing factors of single particles measurement by ICP-MS. A series of processes are investigated, which include increasing the droplet temperature to the boiling point, desolvation of the droplets, increasing the particle temperature to the melting point, the particles are melted from a solid to the liquid, increasing the particle temperature to the boiling point, and particle vaporization. The simulation shows that both the atomic (ion) diffusion in the plasma and the incomplete vaporization of the particles are two important factors that limit the signal intensity of the particle’s mass spectrum. The experiment reveals that ICP-MS is very linear for Ag nanoparticles below 100 nm and SiO2 particles below 1000 nm. Both the simulation and experiment reveal the measurement deviation for large particles and that an increase of sampling depth can extend the diffusion time and cause signal suppression. The model can be used to study the mechanisms of monodispersed droplet or single-particle mass spectrometry, analyze the contributing parameters for single particle measurements by ICP-MS and provide a theoretical base for the optimization of single particle measurements in the practical application, such as nanoparticle devices, magnetic materials, biomedical materials additives and consumer products.展开更多
Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formu...Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system.The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number(Re)from 10 to 200 and the dimensionless acceleration(A)between2.0 to 2.0.The simulation demonstrates that the total drag is heavily correlated with A,and large deceleration even drops the drag force to a negative value.It is found that the value of virtual mass force coefficient(CV)of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re.However,the total drag coefficient(CDV)is successfully correlated as a function of Re and A,and it increases as A is increased.The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.展开更多
A simple phenomenological model is developed, which indicates the existence of a direct link between the concept of rest mass of a particle and magnetodynamic energies associated to the formation of the particle. The ...A simple phenomenological model is developed, which indicates the existence of a direct link between the concept of rest mass of a particle and magnetodynamic energies associated to the formation of the particle. The model is based upon the principles of quantization and conservation of flux, well known for their application in superconductivity. The charge of particles is considered as forming vortices of superconducting currents, which we postulate are created by electromagnetic fluctuations from vacuum (or related processes). A new quantization rule gathers the size, the magnetic moment, and the rest mass of the particle and associates these quantities to the integer number of flux quanta that should be stored in the vortices corresponding to each particle. The model is applied to the electron, the muon, the proton, and the neutron. Quantitative consistency with available experimental data for these subatomic particles is obtained.展开更多
After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravar...After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravariant energy momentum tensors emerged analogous to quantized raising and lower operators. Detaching these operators from the general relativistic field equations, and then transporting them to act on extreme spacetimes, these operators were able to generate fundamental particle boson masses. In particular, the operators precisely generated Higgs mass. Then by applying a consistency approach to the gravitational field equations—similar to how Maxwell applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restricting the particle mass to be in precise agreement with CODATA experimental values. Since this is a massless field approach integrated discretely with a massive one, it overcomes various renormalizing difficulties;moreover it solves the mass hierarchal problem of the Standard Model of particle physics, and generates its spin and therefore shows quantum physics to be a subset of General Relativity, just as Einstein had first imagined.展开更多
Using the technique of integration within an ordered product of operators we present a convenient approach for introducing the squeezing operator for the entangled states of two entangled particles with different mass...Using the technique of integration within an ordered product of operators we present a convenient approach for introducing the squeezing operator for the entangled states of two entangled particles with different masses.We also introduce one-sided squeezing operators.展开更多
Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission ...Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.展开更多
This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary par...This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary particles. The calculated mass is for the mass of?. In the periodic table of elementary particles, t quark (13.2 GeV) in the pseudoscalar top-bottom quark-antiquark composite is only a part of full t quark (175.4 GeV), so pseudoscalar?(26.4 GeV) cannot exist independently, and can exist only in the top-bottom quark-antiquark composite. As shown in the observation at the LHC, the resonance with 28 GeV weakens significantly at the higher energy collision (13 TeV), because at the higher collision energy, low-mass pseudoscalar? in the composite likely becomes independent full high-mass vector? moving out of the composite. The periodic table of elementary particles is based on the seven mass dimensional orbitals derived from the seven extra dimensions of 11 spacetime dimensional membrane. The calculated masses of hadrons are in excellent agreement with the observed masses of hadrons by using only five known constants. For examples, the calculated masses of proton, neutron, pion (π±), and pion (±0) are 938.261, 939.425, 139.540, and 134.982 MeV in excellent agreement with the observed 938.272, 939.565, 139.570, and 134.977MeV, respectively with 0.0006%, 0.01%, 0.02%, and 0.004%, respectively for the difference between the calculated and observed mass. The calculated masses of the Higgs bosons as the intermediate vector boson composites are in excellent agreements with the observed masses. In conclusion, the calculated masses of the top-bottom quark-antiquark composite (27.9 GeV), hadrons, and the Higgs bosons by the periodic table of elementary particles are in excellent agreement with the observed masses of resonance with 28 GeV at the LHC, hadrons, and the Higgs bosons, respectively.展开更多
The equations of motion of physical bodies are given, the characteristic parameters of which become the basis for determining a fundamental property of all matter—“mass”. The equations of motion are characterized b...The equations of motion of physical bodies are given, the characteristic parameters of which become the basis for determining a fundamental property of all matter—“mass”. The equations of motion are characterized by two constants, the derivative of one of which is the fine structure constant. Using these constants, energy scales are compiled, which are the basis for classifying particles by mass.展开更多
During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field...During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.展开更多
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
文摘The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant.
基金Supported by Natural Science Foundation of China(50408019)Foundation for the Author of National Excellent Doctoral Dissertation of PR China(FANEDD200545)+1 种基金Folk Ying Tung Education Foundation(104006)Human Provincial Natural Science Foundation of China(06JJ1001)
文摘Continuous measurement of ambient PM10 was performed by TEOM at a university campus for about one year from 20 November 2007 to 29 October 2008 in Changsha city of Hunan province.Indoor PM10 and PM2.5 concentration were measured by DustTrak simultaneously in order to describe the difference in concentration level and daily variations of particle mass concentration between different seasons,and to survey the influence of ambient particle on indoor air quality.During the survey period,the annual average PM10 concentration was found to be 117.63 μg/m3,with a mean value 121.88 μg/m3 in winter and 111.50 μg/m3 in spring.The temporal trend changed quickly from time to time,and the peak values were found in rush hours and in the evening.Ambient PM10 showed a good correlation with indoor PM10 and outdoor PM2.5 but not with indoor PM2.5.These results showed that PM10 was influenced by local source(such as traffic or fuel burning)and regional source.The correlation analysis has shown that ambient PM10 contributes substantial fraction to indoor PM10 but not to indoor PM2.5,which indicates other source may exist in the indoor environment.
文摘Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.
基金supported by the National Key Research and Development Program of China (Grand No. 2019YFD1100602)the National Natural Science Fund for Excellent Young Scholar of China (Grant No. 51822604)+1 种基金the National Natural Foundation of China (Grand No. 51676045)the Natural Science Fund of Jiangsu Province for Distinguished Young Scholar (Grand No. BK20180014)。
文摘Pyrolysis and heat transfer characteristics of single large biomass particle were investigated using threedimensional unsteady heat transfer model coupled with chemical reactions.The consumption of biomass and the production of products were simulated.Some experiments were designed to provide model parameters for simulation calculations.The simulation was verified by pyrolysis experiments of large biomass particle in a vertical tube furnace.The simulation results show the internal heat and mass transfer law during the pyrolysis of large biomass particle.When the biomass particle diameter is between 10 and 30 mm,for every 5 mm increase in particle diameter,the time required for complete pyrolysis will increase on average by about 50 s.When the pyrolysis temperature is between 673 K and 873 K,a slight decrease in the pyrolysis temperature will cause the time required for the biomass to fully pyrolyze to rise significantly.And the phenomenon is more obvious in the low temperature range.The results indicate that the numerical simulation agrees well with the experimental results.
文摘Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.
文摘The Brussels Capital Region has difficulties in meeting the stringent EU daily limit value for PM10 in all its measuring sites. Postponing the attainment of the deadline was not granted by the EU Commission, mainly due to insufficient judged measures to reduce road traffic emissions. However, a thorough analysis of the data makes clear that neither the particle mass concentration (PM10 and PM2.5) nor the particle number concentration are specific metrics for evaluating the particle pollution originated by traffic. In fact, increased formation of secondary aerosol, together with adverse meteorological conditions and the (re) suspension of the coarser fraction are by far the three main explanations for the numerous PM10 exceeding values. From our experience, amongst the particles measured, only the results for Black Carbon (BC), mainly present in the lower submicron range, are reflective of the direct influence of local traffic. Measured at two traffic sites along with PM mass and number concentrations, the data for Black Carbon show a striking correlation with nitrogen monoxide, a parameter strongly related with the proximity of the local traffic. The correlation factor between Black Carbon data and NO or NOX is much higher than between Black Carbon and the PM mass or number concentration. Therefore the assessment of traffic related particles should consider Black Carbon rather than PM10 or PM2.5.
文摘This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.
文摘The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aerosol concentration. By using the stability classification method, trajectory clustering analysis and the NOAA HYSPLIT model, the seasonal distribution characteristics of atmospheric inhalable particulate matter concentration in Qingdao, China and its relationship with meteorological conditions, mixed layer height, and the seasonal characteristics of Qingdao pollutant transport were analyzed. The results show that the variation trends of PM2.5 and PM10 were about the same, and there are obvious seasonal differences, which are high in winter and spring, and low in summer and autumn. The concentration of inhalable particulate matter has a negative correlation with temperature, wind speed and relative humidity. The concentration of inhalable particulate matter is distinct in different relative humidity ranges. When the wind speed is less than 3 - 4 m/s, there are more inhalable particles, while the mass concentration shows obvious reduction with the wind speed more than 4 m/s. There is a significant negative correlation between the mass concentration of pollutants and the daily maximum mixed layer height. The larger the concentration of pollutants, the smaller the thickness of the daily largest mixed layer. Conversely, the smaller the mass concentration of pollutants, the larger the thickness of the daily largest mixed layer. The pollutant transport in Qingdao has obvious seasonal characteristics. The air mass in spring, autumn and winter is mainly medium-long distance transport from Mongolia and southern Russia, and medium-short distance transport from Inner Mongolia and northeast of China. The source of air masses in summer is mainly transported from the eastern and sea areas.
文摘The masses of a l l fundamental elementary particles (those with a lifetime > 10-24 sec) can be calculated with an inaccuracy of approx. 1% using the equation m/melectron = N/2α where α is the coupling constant of quantum electrodynamics (also known as fine structure constant) (= 1/137.036), and N is an integer variable. This is the by far most accurate and most comprehensive approach to calculate the particle masses.
文摘By using the revision of the momentum for a particle moving with high velocity and by investigating the famous Bucherer's experiment of an electron deflecting with high velocity in the electromagnetic fields in 1908, the paper determines that mass of the electron with high velocity is still to observe the law of conservation of mass.
文摘A droplet carrying particle is desolvation, vaporization, ionization, and diffusion in an inductively coupled plasma (ICP) to form a cloud of ions. It then is detected as a mass-spectrum peak of individual particle. The diameter of the particle is derived from its mass, which is calibrated using the peak area. This is the basic principle of measuring single particles using inductively coupled plasma mass spectrometry (ICP-MS). In this paper, a mathematical model describing single particles in plasma is investigated. This makes it possible to investigate the process and contributing factors of single particles measurement by ICP-MS. A series of processes are investigated, which include increasing the droplet temperature to the boiling point, desolvation of the droplets, increasing the particle temperature to the melting point, the particles are melted from a solid to the liquid, increasing the particle temperature to the boiling point, and particle vaporization. The simulation shows that both the atomic (ion) diffusion in the plasma and the incomplete vaporization of the particles are two important factors that limit the signal intensity of the particle’s mass spectrum. The experiment reveals that ICP-MS is very linear for Ag nanoparticles below 100 nm and SiO2 particles below 1000 nm. Both the simulation and experiment reveal the measurement deviation for large particles and that an increase of sampling depth can extend the diffusion time and cause signal suppression. The model can be used to study the mechanisms of monodispersed droplet or single-particle mass spectrometry, analyze the contributing parameters for single particle measurements by ICP-MS and provide a theoretical base for the optimization of single particle measurements in the practical application, such as nanoparticle devices, magnetic materials, biomedical materials additives and consumer products.
基金supported by the National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22035007,91934301)+1 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)Chemistry and Chemical Engineering Guangdong Laboratory,Shantou(No.1922006).
文摘Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system.The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number(Re)from 10 to 200 and the dimensionless acceleration(A)between2.0 to 2.0.The simulation demonstrates that the total drag is heavily correlated with A,and large deceleration even drops the drag force to a negative value.It is found that the value of virtual mass force coefficient(CV)of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re.However,the total drag coefficient(CDV)is successfully correlated as a function of Re and A,and it increases as A is increased.The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.
文摘A simple phenomenological model is developed, which indicates the existence of a direct link between the concept of rest mass of a particle and magnetodynamic energies associated to the formation of the particle. The model is based upon the principles of quantization and conservation of flux, well known for their application in superconductivity. The charge of particles is considered as forming vortices of superconducting currents, which we postulate are created by electromagnetic fluctuations from vacuum (or related processes). A new quantization rule gathers the size, the magnetic moment, and the rest mass of the particle and associates these quantities to the integer number of flux quanta that should be stored in the vortices corresponding to each particle. The model is applied to the electron, the muon, the proton, and the neutron. Quantitative consistency with available experimental data for these subatomic particles is obtained.
文摘After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravariant energy momentum tensors emerged analogous to quantized raising and lower operators. Detaching these operators from the general relativistic field equations, and then transporting them to act on extreme spacetimes, these operators were able to generate fundamental particle boson masses. In particular, the operators precisely generated Higgs mass. Then by applying a consistency approach to the gravitational field equations—similar to how Maxwell applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restricting the particle mass to be in precise agreement with CODATA experimental values. Since this is a massless field approach integrated discretely with a massive one, it overcomes various renormalizing difficulties;moreover it solves the mass hierarchal problem of the Standard Model of particle physics, and generates its spin and therefore shows quantum physics to be a subset of General Relativity, just as Einstein had first imagined.
基金supported by the Specialized Research Fund for Doctoral Progress of Higher Education of China under Grant No.20070358009
文摘Using the technique of integration within an ordered product of operators we present a convenient approach for introducing the squeezing operator for the entangled states of two entangled particles with different masses.We also introduce one-sided squeezing operators.
文摘Particle emission during manufacturing processes, whether chemical, physical or mechanical can represent a serious danger for environment and for occupational safety. Especially machining processes, particle emission could have an important impact on shop floor air quality and might jeopardise workers’ health. It is therefore important to find ways of reducing the particle emission at the source of manufacturing processes. To do so, there is a need to know the size, the quantity and the distribution of particles produced by processes currently used in industry. In this study, investigations are done to compare the particle emission (PM2.5) when polishing two granites (black and white). The black granite contained low Si concentration (about 10% Si) and the white granite contained high Si concentration (about 50% Si). Particle emission was monitored using the DustTrak II equipment with 2.5 μm impactor. The particle grain size was evaluated using X-ray diffraction techniques. Machining conditions leading to the generation of finer particles were identified.
文摘This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary particles. The calculated mass is for the mass of?. In the periodic table of elementary particles, t quark (13.2 GeV) in the pseudoscalar top-bottom quark-antiquark composite is only a part of full t quark (175.4 GeV), so pseudoscalar?(26.4 GeV) cannot exist independently, and can exist only in the top-bottom quark-antiquark composite. As shown in the observation at the LHC, the resonance with 28 GeV weakens significantly at the higher energy collision (13 TeV), because at the higher collision energy, low-mass pseudoscalar? in the composite likely becomes independent full high-mass vector? moving out of the composite. The periodic table of elementary particles is based on the seven mass dimensional orbitals derived from the seven extra dimensions of 11 spacetime dimensional membrane. The calculated masses of hadrons are in excellent agreement with the observed masses of hadrons by using only five known constants. For examples, the calculated masses of proton, neutron, pion (π±), and pion (±0) are 938.261, 939.425, 139.540, and 134.982 MeV in excellent agreement with the observed 938.272, 939.565, 139.570, and 134.977MeV, respectively with 0.0006%, 0.01%, 0.02%, and 0.004%, respectively for the difference between the calculated and observed mass. The calculated masses of the Higgs bosons as the intermediate vector boson composites are in excellent agreements with the observed masses. In conclusion, the calculated masses of the top-bottom quark-antiquark composite (27.9 GeV), hadrons, and the Higgs bosons by the periodic table of elementary particles are in excellent agreement with the observed masses of resonance with 28 GeV at the LHC, hadrons, and the Higgs bosons, respectively.
文摘The equations of motion of physical bodies are given, the characteristic parameters of which become the basis for determining a fundamental property of all matter—“mass”. The equations of motion are characterized by two constants, the derivative of one of which is the fine structure constant. Using these constants, energy scales are compiled, which are the basis for classifying particles by mass.
文摘During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.