期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Component azimuths of the CEArray stations estimated from P-wave particle motion 被引量:51
1
作者 Fenglin Niu Juan Li 《Earthquake Science》 CSCD 2011年第1期3-13,共11页
The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including... The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including 850+ broadband stations. It forms a gigantic seismic array that provides an unprecedented opportunity to study the Earth's deep interior besides its routine task of seismic monitoring. Many modern seismic studies rely on rotation of vertical and horizontal components in order to separate different types of seismic waves. Knowledge of the orientations of the two horizontal components thus is important to perform a correction rotation. We analyzed particle motions of teleseismic P waves recorded by the network and used them to estimate the northcomponent azimuth of each station. An SNR-weighted-multi-event method was introduced to obtain component azimuths that best explain the P-wave particle motions of all the events recorded at a station. The method provides robust estimates including a measurement error calculated from background noise levels. We found that about one third of the stations have some sort of problems, including misorientation of the two horizontal components, mislabeling and polarity reversal in one or more components. These problems need to be taken into account for any rotation based seismic studies. 展开更多
关键词 P-wave particle motion back azimuth component azimuth CEArray
下载PDF
Experimental Research on Salt-out Particle Motion and Concentration Distribution in a Vortex Pump Volute 被引量:6
2
作者 GAO Bo YANG Minguan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期53-59,共7页
The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle... The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle motion and concentration distribution. Study on the particle hydrodynamic characteristics in the pump volute becomes a key problem, because the crystal particles are mainly distributing in this zone after they enter the pump. Phase Doppler particle analyzer(PDPA) is used to measure the two-phase flow field in a model pump volute to get more understanding about the salt-out phenomenon. The crystal particle velocities are obtained in all three peripheral, radial and axial directions. Particle size and particle number density(PND) measurements are also performed in the experiment. Results are presented and discussed along the radial direction under different pump operating conditions, as well as various axial measurement positions. It is found that particle velocity gradient of peripheral component varies with the pump discharge. There is a turning point of relation between peripheral velocity component and discharge. Radial flow velocity curves look like a saddle shape and velocity magnitudes are changing greatly with the discharge. The non-equilibrium velocity feature between liquid and solid phase on this direction is also remarkable. Particles flow into the impeller at radial position R〈I, and the axial velocity component increases in this region. The particle size curve shows an open-up parabola distribution. The largest particles are distributing near the casing peripheral wall. As flow rate increases, accordingly PND increases. It also grows up in the axial-outward direction towards the suction cover. Crystal particle aggregation phenomenon can be revealed from the analysis of particle size and PND distribution, and the aggregation region is determined as well. Research results are helpful for optimal design of this kind of pump preventing salt-out. 展开更多
关键词 vortex pump salt-oat particle motion concentration distribution
下载PDF
Particle motion behavior during gasiication of foam carrier in lost foam-squeeze casting of 20%TiC/ZG270-500 composites 被引量:1
3
作者 Bin Shibo Xing Shuming +1 位作者 Guo Lijun Bao Peiwei 《China Foundry》 SCIE CAS 2013年第6期367-373,共7页
The particle motion behavior affects the distribution of particles in the metal matrix and finally determines the mechanical properties of the particle reinforced metal-matrix composites. To obtain a uniform distribut... The particle motion behavior affects the distribution of particles in the metal matrix and finally determines the mechanical properties of the particle reinforced metal-matrix composites. To obtain a uniform distribution of TiC particles and excellent strengthening effect in 20%TiC/ZG270-500 composites fabricated by lost foam-squeeze casting (LFSC), the particle motion behavior in the gas gap and the conditions of the particles getting into the molten steel were investigated. The results show that the airflow velocity (vl) and TiC particle motion velocity (up) change little with the pouring temperature (Tp), increase with an increase in metal filling velocity (Vp), ratios of cross sections of in-gate/orifice (AAAo) and orifice/mould cavity (AolAI), but the increase trend of up is more intense. The airflow pressure (P1) changes little with Tp and Ao/A1, but increases with the increasing of vp and AJAo. Besides, there is a critical velocity (v +|3YLG cosθ/ppdp|1/2)for the particles getting into the molten steel. The higher the particle motion velocity, the easier the particles get into the molten steel and the more uniform the distribution of the particles in the steel matrix. When Tp = 1,873 K, vp = 30 mm.s-1, AJAo =10 and Ao/AI = 0.02 in this study, the biggest TiC particle motion velocity (20.59 m.s-~) can be gained, and the steel matrix with the most uniformly distributed TiC particles and fine grains are obtained. 展开更多
关键词 lost foam-squeeze casting (LFSC) particle motion velocity critical velocity particle distribution
下载PDF
Particle Motion in Surface Gravity Waves 被引量:1
4
作者 Kern E. Kenyon 《Natural Science》 2021年第2期18-20,共3页
Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. Th... Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. The classical potential flow model is incapable of explaining the particle movement due to the irrotational assumption and to a flaw in carrying out the method. When a wave passes by an observer from left to right, the particles move clockwise under a crest and a trough. This correct conclusion is consistent with what the incorrect standard theory implies but should not be considered to have been derived from it. 展开更多
关键词 Surface Gravity Waves Orbital particle motion
下载PDF
A numerical method for spherical particle motion in turbulent flow with large Reynolds number
5
作者 ZHANG Yong\|ze\+1, LI Jia\+2, LI Ke feng\+2, WANG Xuan\+3 (1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China 2. Sichuan University, Chengdu 610065, China 3. Beijing Normal University, Beijing 100875, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1999年第4期407-414,442,共8页
A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was ca... A new mathematical model, fluctuation spectrum random trajectory model (FSRTM) for the particle motion in environmental fluid was developed using Lagrangian method, in which the time mean velocity of the fluid was calculated by a time mean velocity formula for two dimensional homogeneous shear turbulent flows in open channel, the velocity fluctuation of the fluid was determined by Fourier expansion and fluctuation spectrum, and the particle motion equation was solved using Ronge Kutta method. For comparison, the spherical cation exchange resins with a density of 1 44 g/cm\+3 and diameters ranging from 0 50—0 60 mm, 0 60—0 70 mm and 0 80—0 90 mm were selected as the experimental solid particles, and their moving velocities and trajectories in shear turbulent flows with the flow Reynolds number of 4710, 10240, 11900 and 20760 were investigated. The comparing analyses of the modeled results with the measured results have shown that the model developed in this paper can describe the motions of the particles in shear turbulent flow. 展开更多
关键词 shear turbulent flow particle motion fluctuation spectrum random trajectory model
下载PDF
Numerical simulation of particle motion at cucumber straw grinding process based on EDEM 被引量:4
6
作者 Yunfeng Xu Xiliang Zhang +6 位作者 Shuo Wu Cheng Chen Jizhang Wang Shouqi Yuan Bin Chen Pingping Li Rongjun Xu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期227-235,共9页
Simulation of straw grinding process based on discrete element method(DEM)was proposed.According to the force analysis and kinematics analysis,the differential equation of straw particle motion on hammers was deduced,... Simulation of straw grinding process based on discrete element method(DEM)was proposed.According to the force analysis and kinematics analysis,the differential equation of straw particle motion on hammers was deduced,and the formation mechanism of the material circulation layer was obtained.Geometric model of grinder,particle model and contact model were established by EDEM software.The influence of hammer number,hammer thickness and gap of the hammer-sieve on particle grinding number and power consumption were obtained by single factor simulation test.The grinding process is divided into three stages.The hammer smashing plays a dominant role in 0-0.25 s.While the hammer smashing particle number increases slowly and then decreases to the lowest level in 0.25-0.60 s,the tooth plate smashing particle number increases rapidly and dominates,and then forming a material circulation layer.The hammer and tooth plate smashing particle number is basically stable in 0.60-2.00 s,and the tooth plate smashing occupies the dominant position.With the increase of the number and thickness of hammers,the power consumption of crusher tends to increase,and with the increase of the gap between hammers and sieves,the power consumption of crusher decreases first and then increases.The results can provide guidance for the development of high-efficiency and energy-saving grinding equipment for cucumber straw. 展开更多
关键词 cucumber straw grinding process particle motion numerical simulation EDEM
原文传递
Numerical Study on Particle Motions in Swirling Flows in a Cyclone Separator 被引量:3
7
作者 Kazuyoshi MATSUZAKI Hideaki USHIJIMA +1 位作者 Mizue MUNEKATA Hideki OHBA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第2期181-185,共5页
The purpose of this study is to establish the high-accurate prediction method of particle separation in a cyclone separator. Numerical simulation of the swirling flows in a cyclone separator is performed by using a la... The purpose of this study is to establish the high-accurate prediction method of particle separation in a cyclone separator. Numerical simulation of the swirling flows in a cyclone separator is performed by using a large eddy simulation (LES) based on a Smagorinsky model. The validity of the simulation and the complicated flow characteristics are discussed by comparison with experimental results. Moreover, particle motions are treated by a Lagrangian method and are calculated with a one-way method. A performance for particle separation is predicted from the results of the particle tracing. As results of our investigation, the influences of the inserted height of the outlet pipe on the performance for particle separation of cyclone separator are shown. 展开更多
关键词 cyclone separator swirling flow particle motion large eddy simulation
原文传递
Simulation on motion of particles in vortex merging process
8
作者 黄海明 徐晓亮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第4期461-470,共10页
In a two-phase flow, the vortex merging influences both the flow evolution and the particle motion. With the blobs-splitting-and-merging scheme, the vortex merging is calculated by a corrected core spreading vortex me... In a two-phase flow, the vortex merging influences both the flow evolution and the particle motion. With the blobs-splitting-and-merging scheme, the vortex merging is calculated by a corrected core spreading vortex method (CCSVM). The particle motion in the vortex merging process is calculated according to the particle kinetic model. The results indicate that the particle traces are spiral lines with the same rotation direction as the spinning vortex. The center of the particle group is in agreement with that of the merged vortex. The merging time is determined by the circulation and the initial ratio of the vortex radius and the vortex center distance. Under a certain initial condition, a stretched particle trail is generated, which is determined by the viscosity, the relative position between the particles and the vortex, and the asymmetrical circulation of the two merging vortices. 展开更多
关键词 vortex method vortex merging particle motion particle trail
下载PDF
Flow field analysis and particle erosion of tunnel-slope systems under coupling between runoff and fast (slow) seepage
9
作者 Shuai Zhang Danqing Song +3 位作者 Ruiliang Zhang Kai Zhang Qi Zhao Suraksha Sharma 《Deep Underground Science and Engineering》 2024年第4期385-398,共14页
The presence of particles on the surface of a tunnel slope renders it susceptible to erosion by waterflow,which is a major cause of soil and water loss.In this study,a nonlinear mathematical model and a mechanical equi... The presence of particles on the surface of a tunnel slope renders it susceptible to erosion by waterflow,which is a major cause of soil and water loss.In this study,a nonlinear mathematical model and a mechanical equilibrium model are developed to investigate the distribution offlowfields and particle motion characteristics of tunnel slopes,respectively.The mathematical model offlowfields comprises three parts:a runoff region,a highly permeable soil layer,and a weakly permeable soil layer.The Navier‒Stokes equation controlsfluid motion in the runoff region,while the Brinkman-extended Darcy equation governs fast and slow seepage in the highly and weakly permeable soil layers,respectively.Analytical solutions are derived for the velocity profile and shear stress expression of the modelflowfield under the boundary condition of continuous transition of velocity and stress at thefluid‒solid interface.The shear stress distribution shows that the shear stress at the tunnel-slope surface is the largest,followed by the shear stress of the soil interface,indicating that particles in these two locations are most vulnerable to erosion.A mechanical equilibrium model of sliding and rolling of single particles is established at thefluid‒solid interface,and the safety factor of particle motion(sliding and rolling)is derived.Sensitivity analysis shows that by increasing the runoff depth,slope angle,and soil permeability,the erosion of soil particles will be aggravated on the tunnel-slope surface,but by increasing the particle diameter,particle-specific gravity,and particle stacking angle,the erosion resistance ability of the tunnel-slope surface particles will be enhanced.This study can serve as a reference for the analysis of surface soil and water loss in tunnel-slope systems. 展开更多
关键词 particle erosion particle motion runoff-fast(slow)seepage coupling shear stress profile tunnel-slope system velocity profile
下载PDF
Motion behavior of particles in air-solid magnetically stabilized fluidized beds for separation 被引量:13
10
作者 Song Shulei a,,Zhao Yuemin a,Luo Zhenfu a,Tang Ligang b a School of Chemical Engineering and Technology,China University of Mining & Technology,Xuzhou 221116,China b Coal Mining and Designing Department,Tiandi Science & Technology Company Co.Ltd.,Beijing 100013,China 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期725-729,共5页
In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The ... In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters. 展开更多
关键词 Air-solid MSFB Free settling Quasi-zero velocity settling motion of particles
下载PDF
Sedimentation motion of sand particles in moving water(Ⅰ):The resistance on a small sphere moving in non-uniform flow 被引量:2
11
作者 Shu-Tang Tsai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期432-437,共6页
In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.Bu... In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field. 展开更多
关键词 Sedimentation motion of sand particles in moving water The resistance on a small sphere moving in non-uniform flow
下载PDF
Collective motion of polar active particles on a sphere
12
作者 Yi Chen Jun Huang +2 位作者 Fan-Hua Meng Teng-Chao Li Bao-Quan Ai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期239-244,共6页
Collective motion of active particles with polar alignment is investigated on a sphere.We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swar... Collective motion of active particles with polar alignment is investigated on a sphere.We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion.In the model,we added a polar alignment strength,along with Gaussian curvature,affecting particles swarm motion.We find that when the force exceeds a certain limit,the order parameter will decrease with the increase of the force.Combined with our definition of order parameter and observation of the model,the reason is that particles begin to move side by side under the influence of polar forces.In addition,the effects of velocity,rotational diffusion coefficient,and packing fraction on particle swarm motion are discussed.It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles,while the velocity has little influence on the clustering motion of particles. 展开更多
关键词 clustering motion of Brownian particles polar active particles SPHERE
下载PDF
Equation of Motion of a Spinning Test Particle in Gravitational Field
13
作者 WU Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期129-132,共4页
Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found th... Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable. 展开更多
关键词 equation of motion of a spinning particle gauge theory of gravity geodesic trajectory
下载PDF
Motion of a Nonrelativistic Quantum Particle in Non-commutative Phase Space
14
作者 FATEME Hoseini 马凯 HASSAN Hassanabadi 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期5-8,共4页
The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the mod... The equation governing the motion of a quantum particle is considered in nonrelativistic non-commutative phase space. For this aim, we first study new Poisson brackets in non-commutative phase space and obtain the modified equations of motion. Next, using novel transformations, we solve the equation of motion and report the exact analytical solutions. 展开更多
关键词 motion of a Nonrelativistic Quantum particle in Non-commutative Phase Space NCS
下载PDF
A Confined Chaotic Motion of a Kicked Particle
15
作者 王旭明 赵金刚 +3 位作者 陈贺胜 姜玉梅 毛剑珊 何大韧 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第5期965-970,共6页
Different types of models for describing the motion of a kicked ion were suggested and studied. It is shown that certain kinds of jumping behavior of the exerting electromagnetic field can lead to a type of noninverti... Different types of models for describing the motion of a kicked ion were suggested and studied. It is shown that certain kinds of jumping behavior of the exerting electromagnetic field can lead to a type of noninvertible property, which changes this conservative system into a 'quasi-dissipative' one. The quasi-dissipative behaviors allow the particle to move along a confined chaotic 'quasi-attractor' in many regions of the parameter space. If the exerting electromagnetic field is discontinuous but the system is still invertible, it will take an unbounded chaotic diffusion with similar parameter values. We hope that this discovery could provide a helpful idea for confining the plasma. 展开更多
关键词 A Confined Chaotic motion of a Kicked particle
下载PDF
THE MOTION OF A SPHERICAL PARTICLE IN THE STOKES FLOW OUTSIDE A CIRCULAR ORIFICE
16
作者 山慧贤 严宗毅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第9期829-841,共13页
For any study ofa suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential, 'This paper for the first lime presents appr... For any study ofa suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential, 'This paper for the first lime presents approximate analytical expressions (in closed form) of all the twelve force and moment coefficienis for a sphere outsied a circular orifice, on the basis of a number of discrete data computed by Yan et al(1987).These coefficients are then applied to calculate the trajectory and angular velocity of a spherical particle approaching the pore at zero Reynolds number. The trajectory is in excellent agreement with the available experimental results. An analysis of the relative importance of the coefficients shows that the rotation effect cannot be neglected near the pore opening or near the wall, and that the lateral force effect must be taken into account in the neighborhood of the edge of the pore opening. It is due to neglecting these factors that previous theoretical results deviate from the experimental ones near the pore opening. The effects of the ratio of the particle to pore radii as well as the influences of the graritytbuoyance on the particle trajectory, velocity distribution and rotation are discnssed in detail. It is pointed out that in the experiments of neutrally-buoyant suspensions, the restriction on the density of the particle is most demanding for a large particle size.The expressions of forces and moments presenled herein are complete, relatively accurate and convenient, thus providing a good prerequisite for further studies of any problems involving the entrance of particles to a pare. 展开更多
关键词 THE motion OF A SPHERICAL particle IN THE STOKES FLOW OUTSIDE A CIRCULAR ORIFICE
下载PDF
Effect of a Non-Zero Velocity of the Motion Frame on the Kinetic Energy of a Free Particle Examined with the Aid of the Relativistic Mechanics
17
作者 Stanislaw Olszewski 《World Journal of Mechanics》 2021年第1期1-6,共6页
The paper examines the change of the relativistic kinetic energy of a free particle due to the velocity change of the motion frame in a special case when this reduction leads to the kinetic energy equal to zero. The d... The paper examines the change of the relativistic kinetic energy of a free particle due to the velocity change of the motion frame in a special case when this reduction leads to the kinetic energy equal to zero. The difference of velocities gives a functional dependent solely on the velocity frame and original velocity of the particle. An analysis applied to the functional gives simple formulae for the extremal values of the mentioned velocity parameters. In the next step, solutions of the equation presented with the functional provide us with the velocities necessary for the vanishing property of the kinetic energy. A characteristic point is that a condition of the velocity of the motion frame smaller than the velocity of light is obtained directly in the applied formalism. This property holds with no reference done to the well-known postulate of the dominant value of the light velocity entering the relativity theory. 展开更多
关键词 Relativistic Kinetic Energy Reduction of the particle Velocity due to the Velocity of the motion Frame
下载PDF
Numerical Study of Collision and Penetration Behavior Between Particles and Screen Plate 被引量:5
18
作者 JIAO Hong-guang ZHAO Yue-min WANG Quan-qiang 《Journal of China University of Mining and Technology》 EI 2006年第2期137-140,146,共5页
For a screening process, the collision and penetration phenomena between particles and screen plate is standard behavior and with collision the mechanical energy of the vibrating screen can be transmitted to the feed.... For a screening process, the collision and penetration phenomena between particles and screen plate is standard behavior and with collision the mechanical energy of the vibrating screen can be transmitted to the feed. In order to recognize further the collision process and the law of penetrating motion, with the spring-dashpot-slider contact model of the distinct element method (DEM), a mathematical model which can describe the collision process has been established and a program for simulating the motion of a single particle on the screen plate developed by VC++. NET. To evaluate the handling capacity of the screen that deals with difficult screening material, an instantaneous penetrating coefficient is defined. The moving period of the screen plate is divided into four stages. By analyzing the state of contact collision at each stage, it is pointed out that the collision ranging from 3π/2 to 2π period is the most favorable aperture for penetration of particles, while the collision ranging from π/2 to n period is the most unfavorable. The numerical simulation result further indicates that increasing the amplitude of the screen plate has a much greater effect on the augmentation of instantaneous penetration coefficient than increasing the vibration frequency. 展开更多
关键词 SCREENING numerical simulation particle motion COLLISION
下载PDF
A further investigation to mechanism of the electrorheological effect of waxy oils:Behaviors of charged particles under electric field 被引量:2
19
作者 Yi-Wei Xie Hong-Ying Li +6 位作者 Chao-Yue Zhang Yang Su Qian Huang Feng Jiang Chao-Hui Chen Shan-Peng Han Jin-Jun Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1247-1254,共8页
Exposing waxy oils to an electric field may significantly improve their cold flowability.Our previous study has shown that interfacial polarization,i.e.,charged particle accumulation on the wax particle surface,is the... Exposing waxy oils to an electric field may significantly improve their cold flowability.Our previous study has shown that interfacial polarization,i.e.,charged particle accumulation on the wax particle surface,is the primary mechanism of the electrorheological behavior of waxy oils.However,the way that charged particles interact with wax particles under an electric field remains unknown.In this study,we found no viscosity and impedance change for two waxy crude oils after their exposure to a high-voltage electric field.However,the yield stresses were reduced obviously.We thus proposed that the collision of colloidal particles such as resins and asphaltenes with the wax particles could be an essential mechanism that the wax particle structure was weakened.To verify this hypothesis,a series of ad hoc experiments were carried out,i.e.,by performing electrorheological tests on model waxy oils containing additives removable under an electric field,including electrically-neutral colloidal particles(Fe3O4),charged colloidal particles(resins),and oil-soluble electrolyte(C22H14CoO4),respectively,and demonstrated that upon application of a high-voltage electric field,charged particles in a waxy oil may move and thus collide with wax particles,and consequently adhere to the wax particle surface.The particle collision results in damage to the wax particle network,and the electrostatic repulsion arising from the adhesion of the charged particle on the wax particle diminishes attraction between wax particles.This study clarifies the process of interfacial polarization. 展开更多
关键词 Waxy oil Electrorheological effect Interfacial polarization Charged particle motion
下载PDF
Influences of Temperature and Average Interparticle Distance on the Properties of Two-Dimensional Dusty Plasma 被引量:1
20
作者 LIUSong-Fen WANGXin +4 位作者 LIUYu-Bin HUBei-Lai WANGLong LIUYan-Hong HUANGFeng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5期919-922,共4页
The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum... The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details. 展开更多
关键词 dusty plasma molecular dynamics simulation structure single particle motion
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部