期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
The Effects of the Particle Size Ratio on the Behaviors of Binary Granular Materials
1
作者 Deze Yang Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期63-85,共23页
The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assembli... The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assemblies with dierent arrangements is still unclear.To explore and further clarify the eect of PSR in dierent packing structures,three types of numerical samples with regular,layered,and random packing are designed.Numerical results show that PSR has signi􀀀cant eects on binary granular samples with regular packing.The larger the PSR,the stronger the strength,the larger the modulus,and the smaller the angle between the shear band and the load direction.And a theoretical solution of the peak stress ratio vs.PSR is obtained for regular packing,and the results by DEM are in good agreement with the theoretical solution.Under layered packing,PSR has little eect on peak stress ratio due to similar microstructure obtained with the changing of PSR.The modulus slightly increased with the increase of PSR.Under random packing with small grain content of 50%,PSR has little eect in the range of 0.5–0.9,but in a larger range,larger PSR leads to greater modulus. 展开更多
关键词 Discrete element method binary granular materials particle size ratio PACKING
下载PDF
Unified Description of the Three Stable Particles in Self-Action Allows Determination of Their Relative Masses
2
作者 Yair Goldin Halfon 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期185-196,共12页
The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials... The Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-eA<sub>μ</sub>)Ψ=mc<sup>2</sup>Ψ describes the bound states of the electron under the action of external potentials, A<sub>μ</sub>. We assumed that the fundamental form of the Dirac equation γ<sub>μ</sub>(δ<sub>μ</sub>-S<sub>μ</sub>)Ψ=0 should describe the stable particles (the electron, the proton and the dark-matter-particle (dmp)) bound to themselves under the action of their own potentials S<sub>μ</sub>. The new equation reveals that self energy is consequence of self action, it also reveals that the spin angular momentum is consequence of the dynamic structure of the stable particles. The quantitative results are the determination of their relative masses as well as the determination of the electromagnetic coupling constant. 展开更多
关键词 Electron in Self Action Electron-Dark-Matter particle Mass ratio Analytic Description Dark-Matter-particle
下载PDF
Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method 被引量:3
3
作者 黄青富 詹美礼 +2 位作者 盛金昌 罗玉龙 速宝玉 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第3期406-415,共10页
In embankments and earth dams, the granular filter used to protect the base soil from being eroded by the fluid flow is a major safety device. In this paper, the migration mechanism of the base soil through this type ... In embankments and earth dams, the granular filter used to protect the base soil from being eroded by the fluid flow is a major safety device. In this paper, the migration mechanism of the base soil through this type of filters with a fluid flow in the base soil-filter system is studied by using the coupled distinct element method and computational fluid dynamics(DEM-CFD) model. The time-dependent variations of the system parameters such as the total eroded base soil mass, the distribution of the eroded particles within the filter, the porosity, the pore water pressure, and the flow discharge are obtained and analyzed. The conceptions of the trapped particle and the trapped ratio are proposed in order to evaluate the trapped condition of the base soil particles in the filter. The variation of the trapped ratio with time is also analyzed. The results show that the time evolutions of the parameters mentioned above are directly related to the gradation of the filter, which is defined as the representative particle size ratio of the base soil to the filter using an empirical filter design criterion. The feasibility of the model is validated by comparing the numerical results with some experimental and numerical results. 展开更多
关键词 base soil-filter system distinct element method trapped ratio representative particle size ratio
原文传递
Studying the particle size ratio effect on granular mixing in a vertically vibrated bed of two particle types 被引量:2
4
作者 Amir Menbari Kamyar Hashemnia 《Particuology》 SCIE EI CAS CSCD 2020年第6期100-111,共12页
The uniform mixing of solids is important in many industries,such as the pharmaceutical,food,petrochemical and chemical industries.We numerically investigated the effect of particle size ratio on the mixing of bisized... The uniform mixing of solids is important in many industries,such as the pharmaceutical,food,petrochemical and chemical industries.We numerically investigated the effect of particle size ratio on the mixing of bisized particles in a quasi-two-dimensional vibrationally fluidized bed.The granular bin ary mixtures comprised spherical particles with different size ratios.Three-dimensional discrete-element simulations agreed with previous experimental results.Convective and diffusive mechanisms occurred Keywords:Discrete-element modeling Fluidization Granular media Mixing Particle size ratio Vibration within the vibrated bed.The particle size had no significant influence on convective mixing,whereas the diffusive mechanism strengthened for large size ratios.The average particle velocity was larger in a mixture of large size ratios.The stronger diffusive motion and larger average particle velocity caused the particles to mix faster for large size ratios.The final mixing index decreased with size ratio because of the difference between the size and number of small and large particles. 展开更多
关键词 Discrete-element modeling FLUIDIZATION Granular media MIXING particle size ratio Vibration
原文传递
A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling 被引量:2
5
作者 Yingjun Jiang Louis Ngai Yuen Wong Jiaolong Ren 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第2期107-115,共9页
In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed fo... In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism. 展开更多
关键词 Graded crushed rocks particle flow modeling California bearing ratio Numerical test Micro-mechanical parametersMesoscopic mechanism
原文传递
Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method 被引量:14
6
作者 Jian Gong Jun Liu 《Particuology》 SCIE EI CAS CSCD 2017年第3期49-62,共14页
Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial com- pression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discret... Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial com- pression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discrete element method. All assemblies were prepared at their densest condition, and triaxial compres- sion tests were performed up to extremely large strains, until a critical state was reached. The stress-strain relationship and the void ratio-strain behavior were evaluated. We found that the stress-dilatancy rela- tionship of ellipsoids with different aspect ratios could be expressed as a linear equation. In particular, the aspect ratio influenced the position of the critical state lines for these assemblies. Particle-scale char- acteristics at the critical state indicate that particles tend to be flat lying, and the obstruction of particle rotation that occurs with longer particles affects their contact mechanics. Lastly, anisotropic coefficients related to aspect ratio were investigated to probe the microscopic origins of the macroscopic behavior. A detailed analysis of geometrical and mechanical anisotropies revealed the microscopic mechanisms underlying the dependency of peak and residual strengths on aspect ratio. 展开更多
关键词 EllipsoidsAspect ratio DEM Triaxial compression particle shape Macro-micro response
原文传递
Multiple model particle flter track-before-detect for range ambiguous radar 被引量:16
7
作者 Wang Guohong Tan Shuncheng +2 位作者 Guan Chengbin Wang Na Liu Zhaolei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1477-1487,共11页
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of ... The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment. 展开更多
关键词 Bayesian framework particle flter Pulse repetition frequency Range ambiguity Signal-to-noise ratio Track-before-detect
原文传递
Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils 被引量:7
8
作者 Xiaoqiang Gu Lutong Lu Jiangu Qian 《Particuology》 SCIE EI CAS CSCD 2017年第3期21-29,共9页
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shea... Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number. 展开更多
关键词 Discrete element method particle size distribution Small strain stiffness Poisson's ratio Coordination number
原文传递
Polymeric microsphere injection in large pore-size porous media 被引量:3
9
作者 Dongqing Cao Ming Han +1 位作者 Jinxun Wang Amar J.Alshehri 《Petroleum》 CSCD 2020年第3期264-270,共7页
High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polym... High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polymeric microsphere injection is a cost-effective way to deal with excessive water production from subterranean formations.This study reports a laboratory investigation on polymeric microsphere injection in a large volume to identify its in-depth fluid diversion capacity in a porous media with large pore/particle size ratio.The performance of polymeric microsphere injection was evaluated using etched glass micromodels based on the pore network of a natural carbonate rock,which were treated as water-wet or oil-wet micromodels.Waterflooding was conducted to displace oil at reservoir temperature of 95°C,followed by one pore volume of polymeric microsphere injection.Three polymeric microsphere samples with median particle size of 0.05,0.3,and 20μm were used to investigate the impact of particle size of the polymeric microspheres on incremental oil production capacity.Although the polymeric microspheres were much smaller than the pores,additional oil production was observed.The incremental oil production increased with increasing polymeric microsphere concentration and particle size.As a comparison,polymeric microsphere solutions were injected into oil-wet and water-wet micromodels after waterflooding.It was observed that the oil production in oil-wet micromodel was much higher than that in water-wet micromodel.The wettability of micromodels affected the distribution patterns of the remaining oil after waterflooding and further dominated the performance of the microsphere injection.The study supports the applicability of microsphere injection in oil-wet heterogeneous carbonates. 展开更多
关键词 High water-cut Polymeric microsphere injection Etched glass micromodel Pore/particle size ratio WETTABILITY Heterogeneous carbonate reservoir Conformance control Oil production
原文传递
An insight into the mechanical behavior of binary granular soils 被引量:1
10
作者 F.Vahidi-Nia A.Lashkari S.M.Binesh 《Particuology》 SCIE EI CAS CSCD 2015年第4期82-89,共8页
This paper investigates the participation of the fines fraction in the load-carrying structure of binary mixtures of granular soils. For this purpose, various fractions of two fine sands were added to two coarse sands... This paper investigates the participation of the fines fraction in the load-carrying structure of binary mixtures of granular soils. For this purpose, various fractions of two fine sands were added to two coarse sands with the same particle size distribution, but different particle shape characteristics. Based on the results of 144 direct shear tests, it was found that fines participation in the load-bearing structure increases with fines content. At the same fines content, the participation of the fines in the load-carrying structure of loose mixtures is greater than in samples that were initially compacted. In addition, it was observed that fines participation rises with the increase in the average size of the fines fraction. 展开更多
关键词 SAND particle size ratio Fines content Fines participation factor lntergranular void ratio
原文传递
Experimental study on the 3D vibrated packing densification of binary sphere mixtures 被引量:2
11
作者 Xizhong An Chao Li Quan Qian 《Particuology》 SCIE EI CAS CSCD 2016年第4期110-114,共5页
The packing densification of binary spherical mixtures under 3D mechanical vibration was studied experimentally. The influences of vibration frequency (ω), volume fraction of large spheres (XL), sphere size ratio... The packing densification of binary spherical mixtures under 3D mechanical vibration was studied experimentally. The influences of vibration frequency (ω), volume fraction of large spheres (XL), sphere size ratio (r, diameter ratio of small to large spheres), and container size (D) on the random binary packing density (p) were systematically analyzed. For any given set of conditions, there exist optimal ω and XL to realize the densest random binary packing; too large or small ω and XL is not helpful for densification. The influences of both r and D on p are monotonic; either reducing r or increasing D leads to a high value of p. With all other parameters held constant, the densest random packing occurs when XL is dominant, which is in good agreement with the Furnas relation. Moreover, the highest random binary packing density obtained in our work agrees well with corresponding numerical and analytical results in the literature. 展开更多
关键词 particle packing Binary spherical mixtures 3D vibration Densification Size ratio
原文传递
Measuring powder flowability with a modified Warren Spring cohesion tester
12
作者 Salam A.Mohammed Ezzat C.Abdullah +1 位作者 Derek Geldart Abdul Aziz A.Raman 《Particuology》 SCIE EI CAS CSCD 2011年第2期148-154,共7页
The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials, intermediates, or products. The development of devices that measure t... The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials, intermediates, or products. The development of devices that measure the flowability of non-aerated powders has not progressed as rapidly as might have been hoped since most research activities have been based on various types of shear testers intended to aid the design of hoppers. A new flowability indicator named as weighted cohesion (WS) is established using newly improved version of direct cohesion texture. A cornerstone of the proposed technique is that the procedure is automated, using a digital Warren Spring tester called Warren Spring-University of Malaya cohesion tester (WSUMCT), thus making results operator-insensitive. Besides being a practical tool to diagnose the cohesion of experimental powders, the ratio between measured cohesion (using WSUMCT) and aerated density (using Hosokawa PT-S) provides us with a powerful technique to research fundamental particle internal cohesion forces directly and use these data to indicate the flowability. In this work, a series of fine (9.4μm) and coarse (60 μm) porous silica gel particle mixtures, and mixtures of fine (28μm) and coarse (72 μm) glass ballotini as well, were used as test powders. The results from these tests agree well with relative flowability determined on our newly driven indicator using WSUMCT. The validation of aerated weighted cohesion (WSA) as a flowability indicator was authenticated by comparing the conducted parameter with established measured Hausner ratio (HR) and angle of repose (AoR). 展开更多
关键词 Flowability Cohesion strength Hausner ratio particle sizeAngle of reposeCohesive powder
原文传递
Combustion characteristics of low-quality lignite for different bed material sphericities in a circulating fluidized bed boiler:A numerical study
13
作者 Barış Gürel Gülşah Karaca Dolgun +1 位作者 Osman İpek Ali Keçebaş 《Particuology》 SCIE EI CAS 2024年第7期364-382,共19页
This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).U... This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power. 展开更多
关键词 Circulating fluidized bed boiler Computational particle fluid dynamics method particle sphericity ratios NO_(x)and SO_(2)emissions Energy production efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部