Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexist...Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.展开更多
An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system i...An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system is composed of a particle separation module, an image acquisition module, an image processing module, and an electric control module. Experiments are carried out using non-uniform 0.1 mm particles. The main advantage of this system consists of a full analysis of particles without any overlap or miss, thus improving the Area Scan Charge Coupled Device (CCD) acquisition problems. Particle size distribution, roundness, and sphericity can be obtained using the system with a deviation of repeated precision of around ±1%. The developed system is shown to be also convenient and versatile for any particle size and shape for academic and industrial users.展开更多
Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characterist...Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.展开更多
The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. M...The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. Meanwhile, a novel type of functional and conductive thermal expandable microsphere was obtained through strongly covering the surface of microsphere by conductive polymers with the mass loading of 1.5%. The optimal conditions to prepare high foaming ratio and equally distributed microcapsules were investigated with AN-MMA-MA in the proportion of 70%/20%/10%(m/m/m), and 25 wt% of n-hexane in oil phase. The further investigation results showed that the unexpanded TEMs were about 30 μm in diameter and the maximum expansion ratio was nearly 125 times of original volume. The polypyrrole(PPy) was smoothly coated on the surface of the TEMs and the expansion property of PPy-coated TEMs was almost the same as the uncoated TEMs. Moreover, the structure and expanding performance of TEMs and PPy-coated TEMs were characterized by scanning electron microscopy(SEM), laser particle size analyzer and dilatometer(DIL).展开更多
基金supported by the National Key Research and Development Project (No.2020YFA0907400)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDPB2005)+2 种基金National Natural Science Foundation of China(No.21777178)the National Young Top-Notch Talents (No.W03070030)Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.Y202011)。
文摘Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations,however,coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis.The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs.Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent,carrier pH,and ion cleaning time,HFUF completely removes metal ions but retains the MCNs in suspension.The optimal conditions include using a mixture of 0.05 vol.%FL-70 and 0.5 mmol/L Na2S2O_(3)(pH=8.0) as the carrier and 4 min as the ion cleaning time.At these conditions,HFUF-SP-ICP-MS accurately determines the sizes of MCNs,and the results agree with the size distribution determined by transmission electron microscopy,even when metal ions also are present in the sample.In addition,reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g.,from 28.3 to 14.2 nm for gold nanoparticles).This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g.,Ag+) and anions (e.g.,AuCl_(4)^(-)) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.
文摘An on-line full scan inspection system is developed for particle size analysis. A particle image is first obtained through optical line scan technology and is then analyzed using digital image processing. The system is composed of a particle separation module, an image acquisition module, an image processing module, and an electric control module. Experiments are carried out using non-uniform 0.1 mm particles. The main advantage of this system consists of a full analysis of particles without any overlap or miss, thus improving the Area Scan Charge Coupled Device (CCD) acquisition problems. Particle size distribution, roundness, and sphericity can be obtained using the system with a deviation of repeated precision of around ±1%. The developed system is shown to be also convenient and versatile for any particle size and shape for academic and industrial users.
基金supported by the strategic project of science and technology of Chinese Academy of Sciences(No.XDB05050000)
文摘Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP < 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type.
基金the National Natural ScienceFoundation of China(Nos.21206171,21376010)the Project of Natural Science Foundation of Beijing(No.2152012)+1 种基金the Young Elite Teacher Project(No.27170115004/027)the Project of 2011 Collaborative Innovation for Green Printing and Publishing Technology and the Project of Beijing Municipal Commission of Educatio (No.km201410005007)for the financial supports
文摘The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. Meanwhile, a novel type of functional and conductive thermal expandable microsphere was obtained through strongly covering the surface of microsphere by conductive polymers with the mass loading of 1.5%. The optimal conditions to prepare high foaming ratio and equally distributed microcapsules were investigated with AN-MMA-MA in the proportion of 70%/20%/10%(m/m/m), and 25 wt% of n-hexane in oil phase. The further investigation results showed that the unexpanded TEMs were about 30 μm in diameter and the maximum expansion ratio was nearly 125 times of original volume. The polypyrrole(PPy) was smoothly coated on the surface of the TEMs and the expansion property of PPy-coated TEMs was almost the same as the uncoated TEMs. Moreover, the structure and expanding performance of TEMs and PPy-coated TEMs were characterized by scanning electron microscopy(SEM), laser particle size analyzer and dilatometer(DIL).