Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope...Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.展开更多
As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the ...As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly.展开更多
In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for...In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relation- ships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (ROD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.展开更多
In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resul...In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.展开更多
A technique is presented for creating surface-adhering dust layers under defined conditions, and characterizing and stressing the layers created. The procedure described is shown to be suitable for the quantitative ev...A technique is presented for creating surface-adhering dust layers under defined conditions, and characterizing and stressing the layers created. The procedure described is shown to be suitable for the quantitative evaluation of the effects of different parameters such as particle size, porosity and surface roughness etc. on the stability of particle layers.展开更多
The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drai...The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drained conditions. Numerical test specimens are prepared by three means: gravitational deposition, multi-layer compression, and isotropic compression, such that different initial inherent soil fabrics are created. The DEM simulation results show that initial fabric anisotropy exerts a considerable effect on the shear behavior of granular soil, and that the peak stress ratio and peak dilatancy increase with an increase in the fabric index an that is estimated from the contact orientations. The stress-dilatancy relationship is found to be independent of the initial fabric anisotropy. The anisotropy related to the contact orientation and contact normal force accounts for the main contribution to the mobilized friction angle. Also, the occurrence of contractive shear response in an initial shearing stage is accompanied by the most intense particle rearrangement and microstructural reorganization, regardless of the sample preparation method. Furthermore, the uniqueness of the critical state line in e-logp' and q-p' plots is observed, suggesting that the influence of initial fabric anisotropy is erased at large shear strains.展开更多
The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials, intermediates, or products. The development of devices that measure t...The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials, intermediates, or products. The development of devices that measure the flowability of non-aerated powders has not progressed as rapidly as might have been hoped since most research activities have been based on various types of shear testers intended to aid the design of hoppers. A new flowability indicator named as weighted cohesion (WS) is established using newly improved version of direct cohesion texture. A cornerstone of the proposed technique is that the procedure is automated, using a digital Warren Spring tester called Warren Spring-University of Malaya cohesion tester (WSUMCT), thus making results operator-insensitive. Besides being a practical tool to diagnose the cohesion of experimental powders, the ratio between measured cohesion (using WSUMCT) and aerated density (using Hosokawa PT-S) provides us with a powerful technique to research fundamental particle internal cohesion forces directly and use these data to indicate the flowability. In this work, a series of fine (9.4μm) and coarse (60 μm) porous silica gel particle mixtures, and mixtures of fine (28μm) and coarse (72 μm) glass ballotini as well, were used as test powders. The results from these tests agree well with relative flowability determined on our newly driven indicator using WSUMCT. The validation of aerated weighted cohesion (WSA) as a flowability indicator was authenticated by comparing the conducted parameter with established measured Hausner ratio (HR) and angle of repose (AoR).展开更多
基金the Fundamental Research Funds for the Central Universities,China(Grant No.B210203032)the National Natural Science Foundation of China(Grant No.52279097)the Green and Blue Project of Jiangsu Province,China.
文摘Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.
基金Project(50908234)supported by the National Natural Science Foundation of ChinaProject(2017G002-K)supported by the Key Subject of Science and Technology Research and Development Plan of China Railway General Corporation
文摘As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly.
文摘In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relation- ships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (ROD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.
基金financially supported by the State Key Laboratory for Mechanical Behavior of Materials (No. 20151712)
文摘In this study, magnesium matrix composites reinforced with different loading of AlN particles were fabricated by the powder metallurgy technique. The microstructure, bending strength and fracture behavior of the resulting Mg-Al/Al N composites were investigated. It showed that the 5 wt% AlN reinforcements led to the highest densification and bending strength. The total strengthening effect of AlN particles was predicted by considering the contributions of CTE mismatch between the matrix and the particles,load bearing and Hall-Petch mechanism. The results revealed that the increase of dislocation density,the change of Mg17Al12 phase morphology, and the effective load transfer were the major strengthening contributors to the composites. The fracture of the composites altered from plastic to brittle mode with increasing reinforcement content. The regions of clustered particles in the composites were easy to be damaged under external load, and the fracture occurred mainly along grain boundaries.
文摘A technique is presented for creating surface-adhering dust layers under defined conditions, and characterizing and stressing the layers created. The procedure described is shown to be suitable for the quantitative evaluation of the effects of different parameters such as particle size, porosity and surface roughness etc. on the stability of particle layers.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51209237, 51428901,41030747) and the Fundamental Research Funds for the Central Universities (No. 131gpy05).
文摘The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drained conditions. Numerical test specimens are prepared by three means: gravitational deposition, multi-layer compression, and isotropic compression, such that different initial inherent soil fabrics are created. The DEM simulation results show that initial fabric anisotropy exerts a considerable effect on the shear behavior of granular soil, and that the peak stress ratio and peak dilatancy increase with an increase in the fabric index an that is estimated from the contact orientations. The stress-dilatancy relationship is found to be independent of the initial fabric anisotropy. The anisotropy related to the contact orientation and contact normal force accounts for the main contribution to the mobilized friction angle. Also, the occurrence of contractive shear response in an initial shearing stage is accompanied by the most intense particle rearrangement and microstructural reorganization, regardless of the sample preparation method. Furthermore, the uniqueness of the critical state line in e-logp' and q-p' plots is observed, suggesting that the influence of initial fabric anisotropy is erased at large shear strains.
文摘The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials, intermediates, or products. The development of devices that measure the flowability of non-aerated powders has not progressed as rapidly as might have been hoped since most research activities have been based on various types of shear testers intended to aid the design of hoppers. A new flowability indicator named as weighted cohesion (WS) is established using newly improved version of direct cohesion texture. A cornerstone of the proposed technique is that the procedure is automated, using a digital Warren Spring tester called Warren Spring-University of Malaya cohesion tester (WSUMCT), thus making results operator-insensitive. Besides being a practical tool to diagnose the cohesion of experimental powders, the ratio between measured cohesion (using WSUMCT) and aerated density (using Hosokawa PT-S) provides us with a powerful technique to research fundamental particle internal cohesion forces directly and use these data to indicate the flowability. In this work, a series of fine (9.4μm) and coarse (60 μm) porous silica gel particle mixtures, and mixtures of fine (28μm) and coarse (72 μm) glass ballotini as well, were used as test powders. The results from these tests agree well with relative flowability determined on our newly driven indicator using WSUMCT. The validation of aerated weighted cohesion (WSA) as a flowability indicator was authenticated by comparing the conducted parameter with established measured Hausner ratio (HR) and angle of repose (AoR).