Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed...An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.展开更多
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili...In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.展开更多
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th...Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.展开更多
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image...The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.展开更多
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ...The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.展开更多
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ...This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO.展开更多
Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and...Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical approximation approaches have been most successfully developed to solve the problems of maximum likelihood parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight the challenges and key issues and encourage the researches for further progress.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷...为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。展开更多
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61673209)the Aeronautical Science Foundation (No.2016ZA52009)
文摘An ant colony optimization with artificial potential field(ACOAPF)algorithm is proposed to solve the cooperative search mission planning problem of unmanned aerial vehicle(UAV)swarm.This algorithm adopts a distributed architecture where each UAV is considered as an ant and makes decision autonomously.At each decision step,the ants choose the next gird according to the state transition rule and update its own artificial potential field and pheromone map based on the current search results.Through iterations of this process,the cooperative search of UAV swarm for mission area is realized.The state transition rule is divided into two types.If the artificial potential force is larger than a threshold,the deterministic transition rule is adopted,otherwise a heuristic transition rule is used.The deterministic transition rule can ensure UAVs to avoid the threat or approach the target quickly.And the heuristics transition rule considering the pheromone and heuristic information ensures the continuous search of area with the goal of covering more unknown area and finding more targets.Finally,simulations are carried out to verify the effectiveness of the proposed ACOAPF algorithm for cooperative search mission of UAV swarm.
基金Sponsored by the Qing Lan Project of Jiangsu Province
文摘In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.
基金supported in part by the National Natural Science Foundation of China(62073330)in part by the Natural Science Foundation of Hunan Province(2019JJ20021,2020JJ4339)in part by the Scientific Research Fund of Hunan Province Education Department(20B272)。
文摘Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.
基金the Researchers Supporting Project(RSP2023R395),King Saud University,Riyadh,Saudi Arabia.
文摘The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.
基金National Natural Science Foundation of China(No.70971020)the Subject of Ministry of Education of Hunan Province,China(No.13C818)+3 种基金the Project of Industrial Science and Technology Support of Hengyang City,Hunan Province,China(No.2013KG63)the Open Project Program of Artificial Intelligence Key Laboratory of Sichuan Province,Sichuan University of Science and Engineering,China(No.2012RYJ03)the Fund Project of Humanities and Social Sciences,Ministry of Education of China(No.13YJCZH147)the Special Fund for Shanghai Colleges' Outstanding Young Teachers' Scientific Research Projects,China(No.ZZGJD12033)
文摘The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.
文摘This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO.
文摘Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical approximation approaches have been most successfully developed to solve the problems of maximum likelihood parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight the challenges and key issues and encourage the researches for further progress.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
文摘为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。