期刊文献+
共找到4,365篇文章
< 1 2 219 >
每页显示 20 50 100
UAV penetration mission path planning based on improved holonic particle swarm optimization
1
作者 LUO Jing LIANG Qianchao LI Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期197-213,共17页
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr... To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods. 展开更多
关键词 path planning network radar holonic structure particle swarm algorithm(pso) predictive control model
下载PDF
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization
2
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 Chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(pso) wake effect wind farm layout optimization(WFLO)
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network
3
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) particle swarm optimization(pso) Convolutional neural network(CNN)
下载PDF
Neural network hyperparameter optimization based on improved particle swarm optimization
4
作者 谢晓燕 HE Wanqi +1 位作者 ZHU Yun YU Jinhao 《High Technology Letters》 EI CAS 2023年第4期427-433,共7页
Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimiza... Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimization(PSO),but its native defect may result in the local optima trapped and convergence difficulty.In this paper,the genetic operations are introduced to the PSO,which makes the best hyperparameter combination scheme for specific network architecture be located easier.Spe-cifically,to prevent the troubles caused by the different data types and value scopes,a mixed coding method is used to ensure the effectiveness of particles.Moreover,the crossover and mutation opera-tions are added to the process of particles updating,to increase the diversity of particles and avoid local optima in searching.Verified with three benchmark datasets,MNIST,Fashion-MNIST,and CIFAR10,it is demonstrated that the proposed scheme can achieve accuracies of 99.58%,93.39%,and 78.96%,respectively,improving the accuracy by about 0.1%,0.5%,and 2%,respectively,compared with that of the PSO. 展开更多
关键词 hyperparameter optimization particle swarm optimization(pso)algorithm neu-ral network
下载PDF
θ-PSO: a new strategy of particle swarm optimization 被引量:7
5
作者 Wei-min ZHONG Shao-jun LI Feng QIAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期786-790,共5页
Particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration co... Particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration coefficients, etc. In this paper, a more simple strategy of PSO algorithm called θ-PSO is proposed. In θ-PSO, an increment of phase angle vector replaces the increment of velocity vector and the positions are decided by the mapping of phase angles. Benchmark testing of nonlinear func- tions is described and the results show that the performance of θ-PSO is much more effective than that of the standard PSO. 展开更多
关键词 群微粒最优化分析 相角 计算机技术 基准
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
6
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION particle swarm INTELLIGENCE (pso) Ant Colony OPTIMIZATION (ACO) Genetic Algorithm (GA)
下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
7
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization (pso hybrid intelligent optimization
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
8
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 ELMAN神经网络 pso-Elman
下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究
9
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(pso) 支持向量机(SVM) 模式识别
下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
10
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(pso chaos theory cloud model hybrid optimization
下载PDF
Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization 被引量:13
11
作者 Zhiming Lv Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期838-849,共12页
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially... For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms. 展开更多
关键词 MULTIOBJECTIVE OPTIMIZATION PARETO active learning particle swarm OPTIMIZATION (pso) surrogate
下载PDF
A Predator-prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory 被引量:21
12
作者 Haibin Duan Pei Li Yaxiang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期11-18,共8页
Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, e... Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, each side seeks the best scheme with the purpose of maximizing its own objective function. In this paper, a game theoretic approach based on predatorprey particle swarm optimization(PP-PSO) is presented, and the dynamic task assignment problem for multiple unmanned combat aerial vehicles(UCAVs) in military operation is decomposed and modeled as a two-player game at each decision stage. The optimal assignment scheme of each stage is regarded as a mixed Nash equilibrium, which can be solved by using the PP-PSO. The effectiveness of our proposed methodology is verified by a typical example of an air military operation that involves two opposing forces: the attacking force Red and the defense force Blue. 展开更多
关键词 Unmanned combat aerial vehicle(UCAV) game theory air combat PREDATOR-PREY particle swarm optimization(pso) Nash equilibrium
下载PDF
Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network 被引量:7
13
作者 Pratik Roy Ghanshaym Singha Mahapatra Kashi Nath Dey 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1365-1383,共19页
This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ... This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period. 展开更多
关键词 Artificial neural network(ANN) FUZZY particle swarm optimization(pso) RELIABILITY prediction software RELIABILITY
下载PDF
Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization 被引量:6
14
作者 Zhe Gao Xiaozhong Liao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期145-153,共9页
A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In th... A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method. 展开更多
关键词 fractional-order calculus rational approximation particle swarm optimization (pso tent map.
下载PDF
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:4
15
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system SYMPLECTIC method particle swarm optimization(pso)algorithm instantaneous optimal control
下载PDF
Sensors deployment optimization in multi-dimensional space based on improved particle swarm optimization algorithm 被引量:7
16
作者 TANG Mingnan CHEN Shijun +2 位作者 ZHENG Xuehe WANG Tianshu CAO Hui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期969-982,共14页
Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors ... Sensors deployment optimization has become one of the most attractive fields in recent years. However, most of the previous work focused on the deployment problem in 2D space.Compared to the traditional form, sensors deployment in multidimensional space has greater research significance and practical potential to satisfy the detecting needs in complex environment.Aiming at solving this issue, a multi-dimensional space sensor network model is established, and the radar system is selected as an example. Considering the possible working mode of the radar system(e.g., searching and tracking), two distinctive deployment models are proposed based on maximum coverage area and maximum target detection probability in the attack direction respectively. The latter one is usually ignored in the previous literature.For uncovering the optimal deployment of the sensor network, the particle swarm optimization(PSO) algorithm is improved using the proposed weights determination scheme, in which the linear decreasing, the pooling strategy and the cloud theory are combined for weights updating. Experimental results illustrate the effectiveness of the proposed method. 展开更多
关键词 spatial sensor optimized deployment strategy particle swarm optimization(pso)
下载PDF
Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization 被引量:4
17
作者 Jianjun Qi Bo Guo +1 位作者 Hongtao Lei Tao Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期69-76,共8页
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations amo... This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP. 展开更多
关键词 project scheduling resource availability cost problem(RACP) HEURISTICS particle swarm optimization (pso path relin-king.
下载PDF
Data-based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks 被引量:13
18
作者 Haowei Lin Bo Zhao +1 位作者 Derong Liu Cesare Alippi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期954-964,共11页
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa... In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network data-based fault tolerant control(FTC) particle swarm optimization(pso)
下载PDF
融合PSO-模糊Petri网的室内燃气泄漏风险研究
19
作者 张新琪 陈国明 +3 位作者 黄佳伟 王朝阳 刘康 乔千哲 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期440-449,共10页
近年来室内燃气事故多发,而燃气用户风险意识淡薄、户内安全检查难度大。针对现行室内燃气安全管理技术多为静态主观评估的局限性,构建了基于模糊Petri网(Fuzzy Petri Net,FPN)的风险计算规则,提出了结合粒子群优化算法(Particles Swarm... 近年来室内燃气事故多发,而燃气用户风险意识淡薄、户内安全检查难度大。针对现行室内燃气安全管理技术多为静态主观评估的局限性,构建了基于模糊Petri网(Fuzzy Petri Net,FPN)的风险计算规则,提出了结合粒子群优化算法(Particles Swarm Optimization,PSO)和FPN的室内燃气泄漏动态风险评估模型。首先,应用Petri网的直观图像描述和异步并发处理能力建立室内燃气泄漏事故风险演化的拓扑结构模型,借助FPN的模糊推理能力处理风险传播的不确定性;然后,根据燃气运维数据,融合PSO动态更新初始参数,提高风险评估的准确性。结果表明,基于PSO-FPN的室内风险评估方法可弱化燃气公司安检人员分析的主观不确定性,更为准确地量化风险因子演化过程,实现室内燃气泄漏风险的动态分析,有效支持户内燃气泄漏风险管控。 展开更多
关键词 安全工程 室内燃气 风险评估 模糊Petri网(FPN) 粒子群优化算法(pso)
下载PDF
Learning Bayesian Networks from Data by Particle Swarm Optimization 被引量:2
20
作者 杜涛 张申生 王宗江 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期423-429,共7页
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local op... Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal.The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms. 展开更多
关键词 BAYESIAN networks structure LEARNING particle swarm optimization(pso)
下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部