Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ...Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.展开更多
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order...Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.展开更多
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen...There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a...The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.展开更多
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications...In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.展开更多
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame...In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.展开更多
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima...This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.展开更多
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl...Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis...This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors.展开更多
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne...Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results.展开更多
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm...In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.展开更多
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic...Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.展开更多
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p...Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.展开更多
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic...Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.展开更多
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
基金supported by the NationalNatural Science Foundation of China(No.61866023).
文摘Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.
基金supported by the National Natural Science Foundation of China(Grant No.62205280)the Graduate Innovation Foundation of Yantai University(Grant No.GGIFYTU2348).
文摘Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
文摘There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
基金funded by the University of Jeddah,Jeddah,Saudi Arabia,under Grant No.(UJ-23-DR-26)。
文摘The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.
基金This work was supported in part by the National Science and Technology Council of Taiwan,under Contract NSTC 112-2410-H-324-001-MY2.
文摘In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
基金the Natural Science Foundation of China under Grant 52077027in part by the Liaoning Province Science and Technology Major Project No.2020JH1/10100020.
文摘In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.
基金King Saud University for funding this research through Researchers Supporting Program Number(RSPD2023R704),King Saud University,Riyadh,Saudi Arabia.
文摘This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.
基金supported by the National Science Foundation of China(42107183).
文摘Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
文摘This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors.
文摘Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results.
基金the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.23NSFSCC0116 and 2022NSFSC12333)the Nuclear Energy Development Project(No.[2021]-88).
文摘In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.
基金supported by the National Key Research and Development Program Projects of China(No.2018YFC1504705)the National Natural Science Foundation of China(No.61731015)+1 种基金the Major instrument special project of National Natural Science Foundation of China(No.42027806)the Key Research and Development Program of Shaanxi(No.2022GY-331)。
文摘Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.
文摘Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
基金the financial support of this work from the National Natural Science Foundation of China(Grant No.11972073,Grant No.51974357,and Grant No.52274027)supported by China Postdoctoral Science Foundation(Grant No.2022M713204)Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant No.2121DJ2301).
文摘Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.