期刊文献+
共找到23,922篇文章
< 1 2 250 >
每页显示 20 50 100
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
1
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
2
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
3
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 Random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
4
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization Lévy flight
下载PDF
Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub
5
作者 Li Zheng Gang Xu Wenbin Chen 《Computers, Materials & Continua》 SCIE EI 2024年第1期935-957,共23页
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ... Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively. 展开更多
关键词 Drone logistics location problem mathematical model DIVERSITY particle swarm optimization
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
6
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
7
作者 Shuai Zhou Dazhi Wang +2 位作者 Yongliang Ni Keling Song Yanming Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期2187-2207,共21页
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame... In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness. 展开更多
关键词 Transformation function filled function fuzzy particle swarm optimization algorithm permanent magnet synchronous motor parameter identification
下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
8
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Accelerated Particle Swarm Optimization Algorithm for Efficient Cluster Head Selection in WSN
9
作者 Imtiaz Ahmad Tariq Hussain +3 位作者 Babar Shah Altaf Hussain Iqtidar Ali Farman Ali 《Computers, Materials & Continua》 SCIE EI 2024年第6期3585-3629,共45页
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe... Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks. 展开更多
关键词 Wireless sensor network cluster head selection low energy adaptive clustering hierarchy accelerated particle swarm optimization
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
10
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection
11
作者 Jyun-Guo Wang 《Computer Systems Science & Engineering》 2024年第5期1149-1170,共22页
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t... In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%. 展开更多
关键词 Double interactively recurrent fuzzy cerebellar model articulation controller(D-IRFCMAC) improved particle swarm optimization(Ipso) fall detection
下载PDF
A New Multiobjective Particle Swarm Optimization Using Local Displacement and Local Guides
12
作者 Saïd Charriffaini Rawhoudine Abdoulhafar Halassi Bacar 《Open Journal of Optimization》 2024年第2期31-49,共19页
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis... This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors. 展开更多
关键词 particle swarm optimization Multiobjective optimization Attractor-Based Displacement Square Root Distance Crowding Distance
下载PDF
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
13
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 Big COVID-19 Data Machine Learning Hyperparameter optimization particle swarm optimization Computational Intelligence
下载PDF
θ-PSO: a new strategy of particle swarm optimization 被引量:7
14
作者 Wei-min ZHONG Shao-jun LI Feng QIAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期786-790,共5页
Particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration co... Particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration coefficients, etc. In this paper, a more simple strategy of PSO algorithm called θ-PSO is proposed. In θ-PSO, an increment of phase angle vector replaces the increment of velocity vector and the positions are decided by the mapping of phase angles. Benchmark testing of nonlinear func- tions is described and the results show that the performance of θ-PSO is much more effective than that of the standard PSO. 展开更多
关键词 particle swarm optimization pso) Phase angle Benchmark function
下载PDF
Driving fatigue fusion detection based on T-S fuzzy neural network evolved by subtractive clustering and particle swarm optimization 被引量:6
15
作者 孙伟 张为公 +1 位作者 李旭 陈刚 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期356-361,共6页
In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features refle... In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection. 展开更多
关键词 driving fatigue fusion detection particle swarm optimization(pso) subtractive clustering(SC)
下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
16
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
下载PDF
High-order generalized screen propagator migration based on particle swarm optimization 被引量:2
17
作者 何润 尤加春 +3 位作者 刘斌 王彦春 邓世广 张丰麒 《Applied Geophysics》 SCIE CSCD 2017年第1期64-72,189,190,共11页
Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unres... Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unresolved. To describe the seismic wave propagation in media with lateral velocity variations and to image high-angle structures, we propose the generalized screen propagator based on particle swarm optimization (PSO-GSP), for the precise fitting of the single-square-root operator. We use the 2D SEG/EAGE salt model to test the proposed PSO-GSP migration method to image the faults beneath the salt dome and compare the results to those of the conventional high-order generalized screen propagator (GSP) migration and split-step Fourier (SSF) migration. Moreover, we use 2D marine data from the South China Sea to show that the PSO-GSP migration can better image strong reflectors than conventional imaging methods. 展开更多
关键词 particle swarm optimization generalized screen propagator Taylor series seismic migration one-way wave operator
下载PDF
Dynamic compensation for sensors based on particle swarm optimization and realization on LabVIEW 被引量:1
18
作者 张霞 张志杰 陈保立 《Journal of Measurement Science and Instrumentation》 CAS 2014年第1期25-28,共4页
In shock wave's pressure testing,a dynamic compensation digital filter is designed based on particle swarm optimization (PSO) algorithm.Dynamic calibration experiment and simulation are conducted for the pressure s... In shock wave's pressure testing,a dynamic compensation digital filter is designed based on particle swarm optimization (PSO) algorithm.Dynamic calibration experiment and simulation are conducted for the pressure sensor.PSO algorithm is applied on Matlab platform to achieve optimization according to input and output data of the sensor as well as the reference model,and the global optimal values got by optimization become the parameters of the compensator.Finally,the dynamic compensation filter is established on LabVIEW platform.The experimental results show that the data after processing with the compensation filter truly reflects the input signal. 展开更多
关键词 particle swarm optimization pso) dynamic compensation LABVIEW
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
19
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis optimization particle swarm INTELLIGENCE (pso) Ant Colony optimization (ACO) Genetic Algorithm (GA)
下载PDF
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
20
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 MIXED H2/H∞ optimal Control particle swarm optimization ALGORITHM Structure-Specified Controller
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部