期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
Hybrid Marine Predators Optimization and Improved Particle Swarm Optimization-Based Optimal Cluster Routing in Wireless Sensor Networks(WSNs)
1
作者 A.Balamurugan Sengathir Janakiraman +1 位作者 M.Deva Priya A.Christy Jeba Malar 《China Communications》 SCIE CSCD 2022年第6期219-247,共29页
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep... Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes. 展开更多
关键词 Marine Predators optimization algorithm(MPOA) particle swarm optimization(psO) optimal cluster-based Routing cluster Head(CH)selection Wireless Sensor Networks(WSNs)
下载PDF
Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization
2
作者 朱红求 《High Technology Letters》 EI CAS 2009年第3期267-271,共5页
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle ... To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model. 展开更多
关键词 lead and zinc smelting permeability index prediction case-based reasoning (CBR) adaptive particle swarm optimization (ps0)
下载PDF
Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search 被引量:1
3
作者 Soukaina Mjahed Khadija Bouzaachane +2 位作者 Ahmad Taher Azar Salah El Hadaj Said Raghay 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期459-494,共36页
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ... This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO. 展开更多
关键词 Ant lion optimization binary clustering clustering algorithms Higgs boson feature extraction dimensionality reduction elbow criterion genetic algorithm particle swarm optimization
下载PDF
PSO Clustering Algorithm Based on Cooperative Evolution
4
作者 曲建华 邵增珍 刘希玉 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期285-288,共4页
Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with mu... Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms. 展开更多
关键词 particle swarm optimization (psO) clustering algorithm COOPERATIVE evolution muiti-populations
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
5
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
Improved Spectral Clustering Clothing Image Segmentation Algorithm Based on Sparrow Search Algorithm 被引量:1
6
作者 HUANG Wenan QIAN Suqin 《Journal of Donghua University(English Edition)》 CAS 2022年第4期340-344,共5页
In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering c... In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering clothing image segmentation algorithm is a common method in the process of clothing image extraction.However,the traditional model requires high computing power and is easily affected by the initial center of clustering.It often falls into local optimization.Aiming at the above two points,an improved spectral clustering clothing image segmentation algorithm is proposed in this paper.The Nystrom approximation strategy is introduced into the spectral mapping process to reduce the computational complexity.In the clustering stage,this algorithm uses the global optimization advantage of the particle swarm optimization algorithm and selects the sparrow search algorithm to search the optimal initial clustering point,to effectively avoid the occurrence of local optimization.In the end,the effectiveness of this algorithm is verified on clothing images in each environment. 展开更多
关键词 clothing segmentation spectral clustering particle swarm optimization algorithm intelligent fashion design
下载PDF
基于改进PSO-Means算法的大数据聚类处理方法 被引量:2
7
作者 蒋大锐 徐胜超 《吉林大学学报(信息科学版)》 CAS 2024年第3期430-437,共8页
针对大数据聚类处理存在不同类型数据聚类效果差、聚类耗时长的问题,提出了基于改进PSO-Means(Particle Swarm Optimization Means)算法的大数据聚类处理方法。该方法采用粒子群算法确定一次聚类过程中单位粒子的飞行时间和飞行方向,预... 针对大数据聚类处理存在不同类型数据聚类效果差、聚类耗时长的问题,提出了基于改进PSO-Means(Particle Swarm Optimization Means)算法的大数据聚类处理方法。该方法采用粒子群算法确定一次聚类过程中单位粒子的飞行时间和飞行方向,预先设定初始聚类中心的选择范围,并适当调整单位粒子的惯性权重,以消除粒子振荡造成的聚类缺陷,成功获取基于大规模数据的聚类中心。结合生成树算法,通过从样本偏差和质心偏度两个方面对PSO算法进行优化,并将优化后的聚类中心输入到k-means聚类算法中,实现大数据聚类处理。实验结果表明,改进的PSO-Means方法可以有效地聚类不同类型的数据,并且聚类耗时仅为0.3 s,验证了该方法具备较好的聚类性能和聚类效率。 展开更多
关键词 大规模数据 粒子群算法 寻优 K-MEANS聚类算法 数据聚类
下载PDF
基于改进PSO-KMeans煤炭异物筛选算法研究
8
作者 朱名乾 刘宾 《舰船电子工程》 2024年第2期35-39,共5页
采煤过程中异物自动识别和分拣是实现矿业信息化的关键技术之一。传统双能X射线系统根据R值算法可有效识别出煤炭中混杂的钢筋与胶皮,却难以识别与煤炭组成成分相似的木质杂质。针对这一问题,提出基于L_(0)范数最小化与改进PSO-KMeans... 采煤过程中异物自动识别和分拣是实现矿业信息化的关键技术之一。传统双能X射线系统根据R值算法可有效识别出煤炭中混杂的钢筋与胶皮,却难以识别与煤炭组成成分相似的木质杂质。针对这一问题,提出基于L_(0)范数最小化与改进PSO-KMeans的木质杂质筛选算法,借助L_(0)范数最小化算法平滑图像,去除煤灰干扰,利用改进PSO-KMeans聚类算法与基于距离变换的分水岭算法实现图像分割,根据离心率与矩形度进行木质杂质识别,并通过仿真实验验证方法的可行性。经验证此方法能有效筛选出煤炭中混杂的木质杂质。 展开更多
关键词 L_0范数最小化算法 粒子群优化算法 K均值聚类算法 分水岭算法
下载PDF
Clustering-Inverse: A Generalized Model for Pattern-Based Time Series Segmentation
9
作者 Zhaohong Deng Fu-Lai Chung Shitong Wang 《Journal of Intelligent Learning Systems and Applications》 2011年第1期26-36,共11页
Patterned-based time series segmentation (PTSS) is an important task for many time series data mining applications. In this paper, according to the characteristics of PTSS, a generalized model is proposed for PTSS. Fi... Patterned-based time series segmentation (PTSS) is an important task for many time series data mining applications. In this paper, according to the characteristics of PTSS, a generalized model is proposed for PTSS. First, a new inter-pretation for PTSS is given by comparing this problem with the prototype-based clustering (PC). Then, a novel model, called clustering-inverse model (CI-model), is presented. Finally, two algorithms are presented to implement this model. Our experimental results on artificial and real-world time series demonstrate that the proposed algorithms are quite effective. 展开更多
关键词 Pattern-Based TIME Series Segmentation clustering-Inverse Dynamic TIME WARPING Perceptually Important POINTS Evolution Computation particle swarm optimization Genetic algorithm
下载PDF
基于改进FCM和PSO-SVM的焊接缺陷识别
10
作者 穆晨光 王海登 +2 位作者 符浩 边传新 史新鑫 《失效分析与预防》 2024年第3期179-185,共7页
为实现海洋工程钢结构件焊接接头缺陷的客观、智能化分类,本文以其数字射线检测图像作为研究对象,进行基于改进的模糊C均值聚类算法(FCM)和粒子群优化支持向量机(PSO-SVM)的缺陷识别研究。首先,基于限制对比度直方图均衡化去除原始图像... 为实现海洋工程钢结构件焊接接头缺陷的客观、智能化分类,本文以其数字射线检测图像作为研究对象,进行基于改进的模糊C均值聚类算法(FCM)和粒子群优化支持向量机(PSO-SVM)的缺陷识别研究。首先,基于限制对比度直方图均衡化去除原始图像中干扰噪声,引入像素点加权系数ω改进FCM进行图像分割;然后,基于灰度共生矩阵提取图像纹理特征,利用主成分分析法进行特征数据降维,将粒子群优化与支持向量机分类相结合进行参数寻优,建立纹理特征与缺陷类型间的连续变量分类模型;最后,以多人工综合完全正确的评价结果验证缺陷识别模型的有效性和准确性。结果表明:所训练的识别模型准确率为96.11%,经验证其识别准确率约为95.2%。与未经限制对比度自适应直方图均衡化(CLAHE)增强的模型、反向传播(BP)神经网络模型对比,该模型可以很好地实现常见缺陷的识别,且误差小,可应用于船用钢数字射线焊接缺陷识别领域。 展开更多
关键词 改进FCM 纹理特征 粒子群算法 支持向量机 缺陷识别
下载PDF
基于FCM-PSO-FWA算法的多个菜鸟驿站选址方法
11
作者 赵林林 吕佳泽 《物流技术》 2024年第8期72-83,共12页
聚焦社区内多个菜鸟驿站选址问题,通过融合多种机器学习方法,设计出能有效解决多个菜鸟驿站选址问题的算法,并运用算例仿真验证所提算法的有效性。首先根据取件方式建立基于0-1整数规划的菜鸟驿站选址模型;接着运用模糊C均值(Fuzzy C-me... 聚焦社区内多个菜鸟驿站选址问题,通过融合多种机器学习方法,设计出能有效解决多个菜鸟驿站选址问题的算法,并运用算例仿真验证所提算法的有效性。首先根据取件方式建立基于0-1整数规划的菜鸟驿站选址模型;接着运用模糊C均值(Fuzzy C-means,FCM)聚类算法将一个多菜鸟驿站选址问题划分成多个单一菜鸟驿站选址问题;然后将烟花算法(Fireworks Algorithm,FWA)融入粒子群算法(Particle Swarm Optimization,PSO),解决传统PSO算法易陷入局部最优解的问题;最后将所提FCM-PSO-FWA算法应用于随机生成不同规模需求点的菜鸟驿站选址和江南大学菜鸟驿站选址中。算例结果表明:在任意数量的需求点条件下,FCM-PSO-FWA算法能有效地解决多个菜鸟驿站的选址问题,并且不会陷入局部最优解,从而验证了该算法的可行性和有效性。 展开更多
关键词 菜鸟驿站 选址 模糊C-均值聚类算法 粒子群算法 烟花算法
下载PDF
基于PSOA聚类和KMP算法的说话人识别方法 被引量:8
12
作者 安冬 荣超群 +1 位作者 杨丹 王骄 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1306-1311,共6页
在说话人识别领域,MFCC特征参数得到了广泛的应用,但是MFCC特征参数包含了语义信息、语种信息和说话人信息等多种信息,所以存在参数中说话人个性特征信息不明显的问题,而且将MFCC应用于SVM分类器时受Mercer准则的限制。针对以上问题,提... 在说话人识别领域,MFCC特征参数得到了广泛的应用,但是MFCC特征参数包含了语义信息、语种信息和说话人信息等多种信息,所以存在参数中说话人个性特征信息不明显的问题,而且将MFCC应用于SVM分类器时受Mercer准则的限制。针对以上问题,提出了一种将PSOA聚类与核匹配追踪算法(KMP)相结合的说话人识别方法,首先通过PSOA聚类算法将MFCC特征参数进行变换处理,得到精简的MFCC特征参数,然后利用KMP算法对核函数形式没有任何限制的特性,对精简后的MFCC特征参数进行分类训练和识别。实验结果表明,基于PSOA-KMP的说话人识别方法相比GMM-UBM识别方法,在EER性能上相对提高了38%。 展开更多
关键词 粒子群算法 聚类 核匹配追踪 说话人识别
下载PDF
基于PSO的无线传感器网络节能分簇协议 被引量:8
13
作者 蒋畅江 石为人 +1 位作者 向敏 唐贤伦 《计算机工程》 CAS CSCD 北大核心 2010年第8期15-17,20,共4页
针对如何最优化组簇、降低簇内节点能耗的同时均衡整个网络能耗的问题,提出一种基于PSO的紧凑且具有能量感知和基站距离感知能力的集中式网络分簇协议,粒子适应值函数基于簇头和簇内节点的欧氏距离、簇头节点能量、簇头与基站距离这3个... 针对如何最优化组簇、降低簇内节点能耗的同时均衡整个网络能耗的问题,提出一种基于PSO的紧凑且具有能量感知和基站距离感知能力的集中式网络分簇协议,粒子适应值函数基于簇头和簇内节点的欧氏距离、簇头节点能量、簇头与基站距离这3个因素定义。仿真结果表明,该协议能有效降低节点死亡速度,延长网络生存周期。 展开更多
关键词 无线传感器网络 分簇协议 粒子群优化算法 网络生存周期
下载PDF
求解0/1背包问题的离散差分进化算法 被引量:15
14
作者 苗世清 高岳林 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1828-1830,共3页
0/1背包问题是实际中经常遇到的一类经典NP难组合优化问题.针对0/1背包问题,提出一种融合贪婪变换的离散差分进化算法.该算法中通过模2运算来实现变异操作;为了满足约束上限,融合了贪婪变换;为了防止早熟,采用了在进化若干代后重新初始... 0/1背包问题是实际中经常遇到的一类经典NP难组合优化问题.针对0/1背包问题,提出一种融合贪婪变换的离散差分进化算法.该算法中通过模2运算来实现变异操作;为了满足约束上限,融合了贪婪变换;为了防止早熟,采用了在进化若干代后重新初始化种群的策略.经数值实验表明,该算法在求解0/1背包问题时是可行的,有效的,比单纯的贪婪算法,融合贪婪变换的粒子群优化算法及融合贪婪变换的遗传算法更加稳健,良好. 展开更多
关键词 0/1背包问题 差分进化算法 遗传算法 粒子群优化 贪婪变换
下载PDF
基于PSO的模糊聚类算法 被引量:17
15
作者 许磊 张凤鸣 《计算机工程与设计》 CSCD 北大核心 2006年第21期4128-4129,共2页
提出了一种基于模糊C-均值算法和粒子群算法的混合聚类算法。该算法结合PSO的全局搜索和FCM局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,有效地克服了FCM对初始值敏感、易陷入局部最优和PSO算法局部搜索较弱的问题,同时... 提出了一种基于模糊C-均值算法和粒子群算法的混合聚类算法。该算法结合PSO的全局搜索和FCM局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,有效地克服了FCM对初始值敏感、易陷入局部最优和PSO算法局部搜索较弱的问题,同时增强了跳出局部最优的能力。实验表明,新算法得到的目标函数值更小,并能减小分类错误率,聚类效果优于单一使用FCM或PSO。 展开更多
关键词 混合聚类 粒子群优化算法 模糊C-均值算法 全局优化 分类错误率
下载PDF
一种改进PSO优化RBF神经网络的新方法 被引量:18
16
作者 段其昌 赵敏 王大兴 《计算机仿真》 CSCD 北大核心 2009年第12期126-129,共4页
为了克服神经网络模型结构和参数难以设置的缺点,提出了一种改进粒子群优化的径向基函数(RBF)神经网络的新方法。首先将最近邻聚类用于RBF神经网络隐层中心向量的确定,同时对引入适应度值择优选取的原则对基本粒子群算法进行改进,采用... 为了克服神经网络模型结构和参数难以设置的缺点,提出了一种改进粒子群优化的径向基函数(RBF)神经网络的新方法。首先将最近邻聚类用于RBF神经网络隐层中心向量的确定,同时对引入适应度值择优选取的原则对基本粒子群算法进行改进,采用改进粒子群(IMPSO)算法对最近邻聚类的聚类半径进行优化,合理的确定了RBF神经网络的隐层结构。将改进PSO优化的RBF神经网络应用于非线性函数逼近和混沌时间序列预测,经实验仿真验证,与基本粒子群(PSO)算法,收缩因子粒子群(CFA PSO)算法优化的RBF神经网络相比较,其在识别精度和收敛速度上都有了显著的提高。 展开更多
关键词 粒子群 径向基函数神经网络 最近邻聚类 收缩因子
下载PDF
基于PSO的无线传感器网络双簇头分簇算法 被引量:10
17
作者 韩冬雪 张瑞华 刘丹华 《计算机工程》 CAS CSCD 北大核心 2010年第10期100-102,共3页
利用粒子群优化算法对无线传感器网络分簇算法进行优化,考虑簇内节点和簇头节点两者的位置及能量信息优化选择主簇头和副簇头。主簇头用以收集簇内节点的信息并进行数据融合,并将融合后的数据发送给副簇头。副簇头负责与基站进行通信。... 利用粒子群优化算法对无线传感器网络分簇算法进行优化,考虑簇内节点和簇头节点两者的位置及能量信息优化选择主簇头和副簇头。主簇头用以收集簇内节点的信息并进行数据融合,并将融合后的数据发送给副簇头。副簇头负责与基站进行通信。该算法可以均衡簇内的能耗,达到延长网络生命周期的效果。仿真实验结果表明,与LEACH算法相比,该算法可使网络生命周期延长50%。 展开更多
关键词 粒子群优化算法 无线传感器网络 双簇头
下载PDF
一种改进的PSO-Means聚类优化算法 被引量:7
18
作者 魏新红 张凯 《河南科技大学学报(自然科学版)》 CAS 北大核心 2011年第2期41-43,109,共3页
针对粒子群优化算法在线性不可分情况下不能找到合适的聚类初始质心和正确的聚类个数的缺点,提出引入核方法,对基于粒子群算法的K均值聚类(PSO-Means)算法进行改进。利用核方法把数据映射到高维空间,在高维空间中使用粒子群算法找出所... 针对粒子群优化算法在线性不可分情况下不能找到合适的聚类初始质心和正确的聚类个数的缺点,提出引入核方法,对基于粒子群算法的K均值聚类(PSO-Means)算法进行改进。利用核方法把数据映射到高维空间,在高维空间中使用粒子群算法找出所应聚的类,最后利用核空间中的聚类算法对数据进行聚类。通过实验,验证了该算法在线性不可分的情况下可以较好的运行,在很大程度上提高了聚类的效果。 展开更多
关键词 核函数 聚类 粒子群算法 K均值算法
下载PDF
基于PSO优化空间约束聚类的SAR图像分割 被引量:12
19
作者 田小林 焦李成 缑水平 《电子学报》 EI CAS CSCD 北大核心 2008年第3期453-457,共5页
相干斑噪声的存在使得合成孔径雷达(SAR)图像的分割问题变得非常复杂.本文提出一种具有鲁棒抗噪特性的SAR图像分割方法,该算法通过将多尺度条件下的边缘信息以及相邻像素的相对位置和强度信息所构成的空间信息融入模糊C-均值(FCM)聚类... 相干斑噪声的存在使得合成孔径雷达(SAR)图像的分割问题变得非常复杂.本文提出一种具有鲁棒抗噪特性的SAR图像分割方法,该算法通过将多尺度条件下的边缘信息以及相邻像素的相对位置和强度信息所构成的空间信息融入模糊C-均值(FCM)聚类算法的相似性测度中,增强了分割方法的抗噪性.空间信息对FCM聚类算法的调控由粒子群优化(PSO)算法完成,优化的调控参数有助于获得良好的分割结果.该算法对初始分割不敏感,并具有鲁棒的抗噪性能.MSTAR数据的分割实验结果表明:该算法能够有效地分割SAR图像,与通过改进型FCM(IFCM)算法获得的分割结果比较,分割结果明显改善. 展开更多
关键词 SAR图像分割 多尺度分析 模糊C-均值聚类 粒子群优化算法
下载PDF
基于MPI的并行PSO混合K均值聚类算法 被引量:13
20
作者 吕奕清 林锦贤 《计算机应用》 CSCD 北大核心 2011年第2期428-431,437,共5页
传统的串行聚类算法在对海量数据进行聚类时性能往往不尽如人意,为了适应海量数据聚类分析的性能要求,针对传统聚类算法的不足,提出一种基于消息传递接口(MPI)集群的并行PSO混合K均值聚类算法。首先将改进的粒子群与K均值结合,提高该算... 传统的串行聚类算法在对海量数据进行聚类时性能往往不尽如人意,为了适应海量数据聚类分析的性能要求,针对传统聚类算法的不足,提出一种基于消息传递接口(MPI)集群的并行PSO混合K均值聚类算法。首先将改进的粒子群与K均值结合,提高该算法的全局搜索能力,然后利用该算法提出一种新的并行聚类策略,并将该算法与K均值聚类算法、粒子群优化(PSO)聚类算法进行比较。实验结果表明,该算法不仅具有较好的全局收敛性,而且具有较高的加速比。 展开更多
关键词 消息传递接口集群 粒子群优化算法 K均值算法 并行聚类
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部