期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An improved particle tracking velocimetry(PTV) technique to evaluate the velocity field of saltating particles 被引量:3
1
作者 JIANG Chanwen DONG Zhibao WANG Xiaoyan 《Journal of Arid Land》 SCIE CSCD 2017年第5期727-742,共16页
Velocity is a key parameter characterizing the movement of saltating particles. High-speed photography is an efficient method to record the velocity. But, manually determining the relevant information from these photo... Velocity is a key parameter characterizing the movement of saltating particles. High-speed photography is an efficient method to record the velocity. But, manually determining the relevant information from these photographs is quite laborious. However, particle tracking velocimetry(PTV) can be used to measure the instantaneous velocity in fluids using tracer particles. The tracer particles have three basic features in fluids: similar movement patterns within a small region, a uniform particle distribution, and high particle density. Unfortunately, the saltation of sand particles in air is a stochastic process, and PTV has not yet been able to accurately determine the velocity field in a cloud of blowing sand. The aim of the present study was to develop an improved PTV technique to measure the downwind(horizontal) and vertical velocities of saltating sand. To demonstrate the feasibility of this new technique, we used it to investigate two-dimensional saltation of particles above a loose sand surface in a wind tunnel. We analyzed the properties of the saltating particles, including the probability distribution of particle velocity, variations in the mean velocity as a function of height, and particle turbulence. By automating much of the analysis, the improved PTV method can satisfy the requirement for a large sample size and can measure the velocity field of blowing sand more accurately than previously-used techniques. The results shed new light on the complicated mechanisms involved in sand saltation. 展开更多
关键词 high-speed photography image processing particle image velocimetry velocity distribution saltation
下载PDF
Electrical Conductivity in a Non-Maxwellian Plasma with Adjustable High-Energy-Tail Distribution
2
作者 项江 李定 仇志勇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第1期7-13,共7页
In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct... In this paper, a solution to the Fokker-Planck equation is presented, which is extended to the field particles' high-energy-tail non-Maxwellian velocity distribution function in transport theory. Based on the correct physical concept of collision intensity, introduced by CHANG and LI, the electrical conductivities for like-particles collisions are obtained in different conditions. The modified Fokker-Planck coefficients for non-Maxwellian scattering are applied in the study. It is found that the parallel part of the collision operator plays an important role. The non-Maxwellian scattering will stimulate the transport processes in various degrees with mutative deviation parameters. 展开更多
关键词 Fokker-Planck coefficients non-Maxwellian velocity distributio field particles velocity distribution electrical conductivity
下载PDF
Influence of MBBR carrier geometrical properties and biofilm thickness restraint on biofilm properties,effluent particle size distribution,settling velocity distribution,and settling behaviour 被引量:2
3
作者 Raheleh Arabgol Peter A.Vanrolleghem Robert Delatolla 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第12期138-149,共12页
The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-... The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-produced solids.The influence of carrier geometric properties and different levels of biofilm thickness on biofilm characteristics,solids production,particle size distribution(PSD),and particle settling velocity distribution(PSVD)is evaluated in this study.The analytical Vi CAs method is applied to the MBBR effluent to assess the distribution of particle settling velocities.This method is combined with microscopy imaging to relate particle size distribution to settling velocity.Three conventionally loaded MBBR systems are studied at a similar loading rate of 6.0 g/(m^(2)·day)and with different carrier types.The AnoxK^(TM)K5 carrier,a commonly used carrier,is compared to so-called thickness-restraint carriers,AnoxK^(TM)Z-carriers that are newly designed carriers to limit the biofilm thickness.Moreover,two levels of biofilm thickness,200μm and 400μm,are studied using AnoxK^(TM)Z-200 and Z-400 carriers.Statistical analysis confirms that K5 carriers demonstrated a significantly different biofilm mass,thickness,and density,in addition to distinct trends in PSD and PSVD in comparison with Z-carriers.However,in comparison of thickness-restraint carriers,Z-200 carrier results did not vary significantly compared to the Z-400 carrier.The K5 carriers showed the lowest production of suspended solids(0.7±0.3 gTSS/day),thickest biofilm(281.1±8.7μm)and lowest biofilm density(65.0±1.5 kg/m^(3)).The K5 effluent solids also showed enhanced settling behaviour,consisting of larger particles with faster settling velocities. 展开更多
关键词 MBBR particle size distribution(PSD) particle settling velocity distribution(PSVD) Settling behaviour ViCAs z-carriers
原文传递
Particle image velocimetry measurement of velocity distribution at inlet duct of waterjet self-propelled ship model 被引量:1
4
作者 龚杰 郭春雨 +1 位作者 吴铁成 赵大刚 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期879-893,共15页
A vehicle-mounted three-dimensional underwater particle image velocimetry(PIV) device is used in a towing tank to measure the velocity distribution of the inlet duct of a waterjet ship model in a self-propulsion tes... A vehicle-mounted three-dimensional underwater particle image velocimetry(PIV) device is used in a towing tank to measure the velocity distribution of the inlet duct of a waterjet ship model in a self-propulsion test. The following points are shown through a comparison of the influences of the stationary and free states of the ship model on the measured results:(1) during the test, the ship attitude will change, specifically, the ship model will heave and trim,(2) the degree of freedom disturbs the processing of the pixel images enough to distort the subsequent image processing,(3) the stationary state of the ship model is the optimal mode for measuring the velocity distribution using the PIV device, and(4) if the changes must be considered, the man-made heaving and trimming may be pre-applied, and be made a corrected stationary mode. In addition, the momentum effect coefficient and the energy effect coefficient are calculated in a non-uniform inflowing state, and the related factors affecting the two coefficients are analyzed. The test results show that the pumping action of the waterjet creates a transverse vector in the cross-sectional speed, which increases the non-uniformity of the inflow. These results could help to establish the design requirements for a waterjet-propelled ship type. 展开更多
关键词 particle image velocimetry(PIV) velocity distribution profile degree of freedom transverse vector
原文传递
The Modified Friction and Diffusion Coefficients of Fokker-Planck Equation and Relaxation Rates for Non-Maxwellian Scattering
5
作者 项江 李定 蔡辉山 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第6期661-670,共10页
In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff p... In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The three- fold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v, Av) for non- Maxwellian scattering is derived by the method of choosing velocity transfer Av, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering. 展开更多
关键词 Fokker-Planck coefficients non-Maxwellian velocity distribution field particles velocity distribution small-angle scattering small-momentum-transfer collisions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部