The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten...The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.展开更多
In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsion...In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.展开更多
Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases an...Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.展开更多
Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surfa...Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surface property, particle size and content of colloidal nano-silica as well as the concentrations of monomer and surfactant on the morphology of nanocomposite latex particles were investigated by transmission electron microscope (TEM) and scanning electron microscope (SEM) in detail. Various interesting morphologies such as grape-like, Chinese gooseberry-like, pomegranate-like and normal core-shell structures were observed. Droplet nucleation mechanism competing with micelle nucleation mechanism was proposed to explain the morphological evolution of the nanocomposite particles.展开更多
The morphology,particle size distribution and thermal properties of microcapsules were evaluated by scanning electron microscopy(SEM),laser diffraction particle size analyzer and differential scanning calorimetry(...The morphology,particle size distribution and thermal properties of microcapsules were evaluated by scanning electron microscopy(SEM),laser diffraction particle size analyzer and differential scanning calorimetry(DSC).Vitamin A was used as model core material,HI-CAP 100(starch octenylsucciniate,OSA-starch) was used as wall material and prepared by spray drying.When emulsions were prepared with 40%(w/v) solution of total solids concentration at the core/wall material ratios of 40%(w/w),the microencapsulation efficiency(ME) was(96.38 ± 0.71)%.Microcapsules exhibited spherical shapes with characteristic dents as evidence by SEM.With the vibrating frequency of the centrifugal granulation from 40,35,30,25 to 20 Hz,the volume diameter(D4,3) was 66.58,71.44,85.61,94.08,and 153.45 μm,respectively.Differential scanning calorimetry(DSC) results revealed that the glass transition temperature(Tg) and melting temperature(Tm) were 56.355 and 208.300°C,respectively.Vitamin A microcapsules produced with HI-CAP 100 exhibited spherical shapes with characteristic dents,which was attributed to drying and cooling solidification involved during spray-drying.The vibrating frequency of the centrifugal granulation had effect on the particle size distribution of microcapsules(P 〈 0.05).The storage and heating stability of microcapsules was well by thermal properties.展开更多
The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a t...The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.展开更多
In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron mic...In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.展开更多
The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was ...The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was established in this work, which is closer to real condition. In this work, the behavior of large size and small size particles, and the influence of particles hardness were investigated. The calculating result of small-size particles presents a general hazardous size coefficient for different contact surface morphology; for large-size particles, it presents a hazardous size coefficient for complicated composition of the dust. And the effect of the dust shape is also discussed.展开更多
This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under dra...This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under drained triaxial compression was performed by controlling two morphological descriptors,i.e.ratio of the smallest to the largest pebble diameter,x,and the maximum pebbleepebble intersection angle,b.These descriptors are vital in generating particle geometry and surface textures.It was found that the stress responses of all assemblies exhibited similar behavior and showed post-peak strainsoftening.The normalized stress ratio and volumetric strains flatten off and tended to reach a steady value after an axial strain of 40%.While the friction angles at peak state varied with different morphological descriptors,the friction angles at critical state showed no significant variation.Moreover,evolution of the average coordination numbers showed a dramatic exponential decay until an axial strain of about 15%after which it stabilized and was unaffected by further increase of axial strain.In addition,stress ratio q/p and strong fabric parameter fs d=fs m were found to follow an approximately linear relationship for each assembly.These findings emphasized the significance of the influences of particle morphology on the macroscopic and microscopic responses of granular materials.展开更多
In order to further understand the effect of solid impurities on pipeline wall during erosion,the particle impact process without fluid was extracted for specific study.The effect of multi-impact particles on the wall...In order to further understand the effect of solid impurities on pipeline wall during erosion,the particle impact process without fluid was extracted for specific study.The effect of multi-impact particles on the wall of pipeline was studied experimentally and simulated.In this experiment,an improved ejection apparatus was implemented to carry out multi-impacts non-overlapping impingement by rhombic particles made of high speed steel(W18Cr4V)on the AA6061 aluminum alloy plate through changing particle angle,incident angle,orientation angle and impact velocity.As a result,each particle's penetration depth was investigated and particles' rebound trajectory can be described through this experiment as well as surface morphology of the target material after impingement.The ductile damage criterion,shear damage criterion and MSFLD damage criterion were jointly implemented in ABAQUS/CAE software to simulate the whole process of collision which proved to be effective by getting consistent result compared with experimental data.It is found that under the condition of continuous non-overlapping impact,the target material produces a small work hardening effect in the impact area by converting kinetic energy of moving particles into internal energy of plate so as to reduce the penetration depth of each impact particle.展开更多
Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwi...Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.展开更多
The Martensite formed at low temperatures in Fe-Ni-Co-Ti alloys is featured as thin plate when the size of γ' dispersively precipitated particles was about 20—50 nm.The interface of martensite plate is not smoot...The Martensite formed at low temperatures in Fe-Ni-Co-Ti alloys is featured as thin plate when the size of γ' dispersively precipitated particles was about 20—50 nm.The interface of martensite plate is not smooth.If the γ'particles are sized less than 5 nm,the thin plate martensite with thermoelastisity may be found at low temperatures,whi greater than 5 nm, intermittent martensite may occur,and the plate martensite increases both in size and quantity with the coarsening of the γ particles.The lenticular or butterfly martensite forms at low tem- peratures until the γ' particles are up to 10—5 nm.展开更多
Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the p...Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the particle medium.In the present work,the performance of the single-layer inversion model and the double-layer inversion model in reconstructing the geometric structure of particle fractal aggregates is studied based on the light reflectancetransmittance measurement method.An improved artificial fish-swarm algorithm(IAFSA)is proposed to solve the inverse problem.The result reveals that the accuracy of double-layer inversion model is more satisfactory as it can provide more uncorrelated information than the single-layer inversion model.Moreover,the developed IAFSA show higher accuracy and better robustness than the original artificial fish swarm algorithm(AFSA)for avoiding local optimization problems effectively.As a whole,the present work supplies a useful kind of measurement technology for predicting geometrical morphology of particle fractal aggregates.展开更多
[Objectives] The paper was to explore whether the microemulsion is a nano-pesticide. [Methods] Several microemulsions commonly available on the market were studied from the perspective of particle size and morphologic...[Objectives] The paper was to explore whether the microemulsion is a nano-pesticide. [Methods] Several microemulsions commonly available on the market were studied from the perspective of particle size and morphological characteristics. With ZIF nano-pesticide prepared earlier as the control, the changes in particle size of microemulsions diluted at different concentrations and the microscopic morphology of dispersed particles were tested and compared by dynamic light scattering laser particle size analyzer combined with scanning electron microscope. [Results] Conventional microemulsions were in dynamic equilibrium, and the particle size changed irregularly after dilution at different concentrations. Especially under scanning electron microscope, the particle distribution of pesticide-bearing droplets were uneven after drying, with aggregation and precipitation of large particles, while the particle size of nano-pesticide changed little after dilution at different concentrations, ranging from 1 to 300 nm. Moreover, the microscopic morphology of nano-pesticide observed under scanning electron microscope was in monodisperse nano state, without aggregation. [Conclusions] The particle size measured by dynamic light scattering alone can not judge whether the microemulsion is a nanometer pesticide, and it is necessary to observe the microscopic disperse state and particle size distribution with the help of electron microscopy.展开更多
A novel and simple strategy of morphology-controlled Sr Ti O3(ST) micro-scale particle synthesis by the flux method is reported. Systematic experiments are designed to realize the tunable morphologies of the particl...A novel and simple strategy of morphology-controlled Sr Ti O3(ST) micro-scale particle synthesis by the flux method is reported. Systematic experiments are designed to realize the tunable morphologies of the particles when the flux salt,sintering process, and the precursors are changed. The ST plates can be synthesized by plate-like Bi4Ti3O12(BIT) precursors in Na Cl flux. However, the as-synthesized Bi4Ti3O12 grains transform into reticular particles and finally into rods at higher temperature in Na Cl and KCl compounds. Besides, cubic ST particles are also prepared using different precursors as a comparative experiment. This study provides a strategy for further investigations in designing the morphology-controlled particles and efficient anisotropic materials of perovskite structure such as ferroelectric and photocatalyst.展开更多
Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has b...Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.展开更多
Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint mo...Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.展开更多
Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is p...Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is proposed, combined with a robust smoothed particle hydrodynamics multiphase algorithm (Zhang 2015). The first step of the method is the creation of the virtual liquid-gas interface across the solid surface by means of dummy particles, thus the calculated surface tension near the triple point serves to automatically modulate the dynarnic contact line towards the equilibrium state. We simulate the evolution process of initially square liquid lumps on fiat and curved surfaces. The predictions of droplet profiles are in good agreement with the analytical solutions provided that the macroscopic contact angle is accurately implemented. Compared to the normal correction method, the present method is straightforward without the need to manually alter the normal vectors. This study presents a robust algorithm capable of capturing the physics of the static welling. It may hold great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, ore floatation, etc.展开更多
A simple method was proposed to produce tungsten(W)particles with controllable shape and size by employing the salt-assisted hydrogen reduction.W particles with controlled shape and size were prepared by adjusting the...A simple method was proposed to produce tungsten(W)particles with controllable shape and size by employing the salt-assisted hydrogen reduction.W particles with controlled shape and size were prepared by adjusting the amount of chlorine salts and the temperature.After adding salt additives,the dispersibility of final particles was obviously improved and more adequate growth of particles was obtained.It was found that the effect of NaCl and LiCl is particularly significant.The average sizes of the obtained W particles at 1038 K after adding 0.1 wt.%NaCl and 0.1 wt.%LiCl were 0.924 and 1.128μm,respectively.With the increase of temperature and amount of chlorine salts,the dispersity of the produced W particles became much better,the size of W sub-particles was increased,and the shape of W sub-particles was changed from spherical to polyhedral.At 1349 K,the addition of chlorine salts even multiplied the particle size,and the average sizes of W particles with 1 wt.%NaCl and 1 wt.%LiCl were raised up to 21.367 and 29.665μm,respectively.Based on the conventional pseudomorphic transformation and chemical vapor transport mechanisms,the effects of adding salts on the reaction mechanism were investigated in detail as well.展开更多
Tapping mode atomic force microscope has been applied to observe single-chain PMMA particles which were stored for six months at room temperature after sprayed hom very dilute solutions in good solvents, good/poor mix...Tapping mode atomic force microscope has been applied to observe single-chain PMMA particles which were stored for six months at room temperature after sprayed hom very dilute solutions in good solvents, good/poor mixed solvents, and a theta solvent. Monodisperse PMMA standards of molecular weights ranging from 7.90 x 10(4) to 1.3 x 10(6) were used to investigate the effect of molecular weight on the size of the single-chain PMMA particles. These single-chain particles showed close to spherical shapes. The morphology of single-chain PMMA particles of a given molecular weight was found to be identical in spite of different solvents used for solution spraying. Molecular weight dependence of the particle dimension was also found. The diameters of single-chain PMMA particles after correction of tip-geometry effect were compared to the values estimated from molecular weight and density.展开更多
基金financial support from the Interdisciplinary Fund of the Wuhan National High Magnetic Field Center (No. WHMFC202101)。
文摘The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.
文摘In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.
基金The project is supported by the National Natural Science Foundation of China (No. 29906009)
文摘Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.
基金This research was financially supported by the Key Project of China Educational Ministry (No. 103064)the Doctoral Foundation of University (No. 20020246031)
文摘Poly(St-co-BuA)/silica nanocomposite latexes were synthesized via conventional emulsion polymerization in the presence of 3-(trimethoxysilyl)propyl methacrylate modified colloidal nano-silica. The effects of surface property, particle size and content of colloidal nano-silica as well as the concentrations of monomer and surfactant on the morphology of nanocomposite latex particles were investigated by transmission electron microscope (TEM) and scanning electron microscope (SEM) in detail. Various interesting morphologies such as grape-like, Chinese gooseberry-like, pomegranate-like and normal core-shell structures were observed. Droplet nucleation mechanism competing with micelle nucleation mechanism was proposed to explain the morphological evolution of the nanocomposite particles.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2001BA501A04B)
文摘The morphology,particle size distribution and thermal properties of microcapsules were evaluated by scanning electron microscopy(SEM),laser diffraction particle size analyzer and differential scanning calorimetry(DSC).Vitamin A was used as model core material,HI-CAP 100(starch octenylsucciniate,OSA-starch) was used as wall material and prepared by spray drying.When emulsions were prepared with 40%(w/v) solution of total solids concentration at the core/wall material ratios of 40%(w/w),the microencapsulation efficiency(ME) was(96.38 ± 0.71)%.Microcapsules exhibited spherical shapes with characteristic dents as evidence by SEM.With the vibrating frequency of the centrifugal granulation from 40,35,30,25 to 20 Hz,the volume diameter(D4,3) was 66.58,71.44,85.61,94.08,and 153.45 μm,respectively.Differential scanning calorimetry(DSC) results revealed that the glass transition temperature(Tg) and melting temperature(Tm) were 56.355 and 208.300°C,respectively.Vitamin A microcapsules produced with HI-CAP 100 exhibited spherical shapes with characteristic dents,which was attributed to drying and cooling solidification involved during spray-drying.The vibrating frequency of the centrifugal granulation had effect on the particle size distribution of microcapsules(P 〈 0.05).The storage and heating stability of microcapsules was well by thermal properties.
文摘The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.
文摘In the typical air polluted city of Shijiazhuang, single inhalable particle samples in non-heating period, heating period, dust storm days, and snowy days were collected and detected by SEM/EDS (scanning electron microscopy and energy dispersive X-ray spectrometry). The particle morphology was characterized by the 6 shape clusters, which are: irregular square, agglomerate, sphere, floccule, column or stick, and unknown, by quantitative order. The irregular square particles are common in all kinds of samples; sphere particles are more, and column or stick are less in winter samples; in the wet deposit samples, agglomerate and floccule particles are not found. The surface of most particles is coarse with fractal edge, which can provide suitable chemical reaction bed in the polluted atmospheric environment. New formed calcium crystal is found to demonstrate the existence of neutralized reaction, explaining the reason for the high SO2 emission and low acid rain frequency in Shijiazhuang. The three sorts of surface patterns of spheres are smooth, semi-smooth, and coarse, corresponding to the element of Si-dominant, Si-Al-dominant, and Fe-dominant, The soot particle is present as floccule with average size around 10 μm, considerably larger than the former reported results, but wrapped or captured with other fine particles to make its appearance unique and enhance its toxicity potentially. The new formed calcium crystal, the 3 sorts of sphere surface patterns, and the unique soot appearance represent the single inhalable particle's morphology characteristics in Shijiazhuang City.
文摘The effect of dust particles on electric contacts and a hazardous size range of hard dust particles using a rigid model were discussed before. As further research, elastic-plastic model of finite element analysis was established in this work, which is closer to real condition. In this work, the behavior of large size and small size particles, and the influence of particles hardness were investigated. The calculating result of small-size particles presents a general hazardous size coefficient for different contact surface morphology; for large-size particles, it presents a hazardous size coefficient for complicated composition of the dust. And the effect of the dust shape is also discussed.
基金The authors would like to express their gratitude for the financial support from Xi’an Jiaotong-Liverpool University(XJTLU)(Grant Nos.RDF 15-01-38 and RDF 18-01-23)Also,the support by the Key Program Special Fund at XJTLU(Grant No.KSF-E-19)Natural Science Foundation of Jiangsu Province(Grant No.BK20160393)is greatly appreciated.
文摘This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under drained triaxial compression was performed by controlling two morphological descriptors,i.e.ratio of the smallest to the largest pebble diameter,x,and the maximum pebbleepebble intersection angle,b.These descriptors are vital in generating particle geometry and surface textures.It was found that the stress responses of all assemblies exhibited similar behavior and showed post-peak strainsoftening.The normalized stress ratio and volumetric strains flatten off and tended to reach a steady value after an axial strain of 40%.While the friction angles at peak state varied with different morphological descriptors,the friction angles at critical state showed no significant variation.Moreover,evolution of the average coordination numbers showed a dramatic exponential decay until an axial strain of about 15%after which it stabilized and was unaffected by further increase of axial strain.In addition,stress ratio q/p and strong fabric parameter fs d=fs m were found to follow an approximately linear relationship for each assembly.These findings emphasized the significance of the influences of particle morphology on the macroscopic and microscopic responses of granular materials.
基金financial support from the National Natural Science Foundation of China (China, Grant No. 51874340)the Natural Science Foundation of Shandong Province (China, Grant No. ZR2018MEE004)。
文摘In order to further understand the effect of solid impurities on pipeline wall during erosion,the particle impact process without fluid was extracted for specific study.The effect of multi-impact particles on the wall of pipeline was studied experimentally and simulated.In this experiment,an improved ejection apparatus was implemented to carry out multi-impacts non-overlapping impingement by rhombic particles made of high speed steel(W18Cr4V)on the AA6061 aluminum alloy plate through changing particle angle,incident angle,orientation angle and impact velocity.As a result,each particle's penetration depth was investigated and particles' rebound trajectory can be described through this experiment as well as surface morphology of the target material after impingement.The ductile damage criterion,shear damage criterion and MSFLD damage criterion were jointly implemented in ABAQUS/CAE software to simulate the whole process of collision which proved to be effective by getting consistent result compared with experimental data.It is found that under the condition of continuous non-overlapping impact,the target material produces a small work hardening effect in the impact area by converting kinetic energy of moving particles into internal energy of plate so as to reduce the penetration depth of each impact particle.
基金The research was supported by the National 863 Project of China(No.2001AA242041).
文摘Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.
文摘The Martensite formed at low temperatures in Fe-Ni-Co-Ti alloys is featured as thin plate when the size of γ' dispersively precipitated particles was about 20—50 nm.The interface of martensite plate is not smooth.If the γ'particles are sized less than 5 nm,the thin plate martensite with thermoelastisity may be found at low temperatures,whi greater than 5 nm, intermittent martensite may occur,and the plate martensite increases both in size and quantity with the coarsening of the γ particles.The lenticular or butterfly martensite forms at low tem- peratures until the γ' particles are up to 10—5 nm.
基金supported by the National Natural Science Foundation of China(No.51806103)the Natural Science Foundation of Jiangsu Province(No.BK20170800)Aeronautical Science Foundation of China(No.201928052002)。
文摘Particles,including soot,aerosol and ash,usually exist as fractal aggregates.The radiative properties of the particle fractal aggregates have a great influence on studying the light or heat radiative transfer in the particle medium.In the present work,the performance of the single-layer inversion model and the double-layer inversion model in reconstructing the geometric structure of particle fractal aggregates is studied based on the light reflectancetransmittance measurement method.An improved artificial fish-swarm algorithm(IAFSA)is proposed to solve the inverse problem.The result reveals that the accuracy of double-layer inversion model is more satisfactory as it can provide more uncorrelated information than the single-layer inversion model.Moreover,the developed IAFSA show higher accuracy and better robustness than the original artificial fish swarm algorithm(AFSA)for avoiding local optimization problems effectively.As a whole,the present work supplies a useful kind of measurement technology for predicting geometrical morphology of particle fractal aggregates.
基金Supported by Zhejiang Public Welfare Technology Application Research- Analysis and Test Project (LGC22C140001)Laboratory Work Research in Colleges and Universities of Zhejiang Province (ZD202104).
文摘[Objectives] The paper was to explore whether the microemulsion is a nano-pesticide. [Methods] Several microemulsions commonly available on the market were studied from the perspective of particle size and morphological characteristics. With ZIF nano-pesticide prepared earlier as the control, the changes in particle size of microemulsions diluted at different concentrations and the microscopic morphology of dispersed particles were tested and compared by dynamic light scattering laser particle size analyzer combined with scanning electron microscope. [Results] Conventional microemulsions were in dynamic equilibrium, and the particle size changed irregularly after dilution at different concentrations. Especially under scanning electron microscope, the particle distribution of pesticide-bearing droplets were uneven after drying, with aggregation and precipitation of large particles, while the particle size of nano-pesticide changed little after dilution at different concentrations, ranging from 1 to 300 nm. Moreover, the microscopic morphology of nano-pesticide observed under scanning electron microscope was in monodisperse nano state, without aggregation. [Conclusions] The particle size measured by dynamic light scattering alone can not judge whether the microemulsion is a nanometer pesticide, and it is necessary to observe the microscopic disperse state and particle size distribution with the help of electron microscopy.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404004)
文摘A novel and simple strategy of morphology-controlled Sr Ti O3(ST) micro-scale particle synthesis by the flux method is reported. Systematic experiments are designed to realize the tunable morphologies of the particles when the flux salt,sintering process, and the precursors are changed. The ST plates can be synthesized by plate-like Bi4Ti3O12(BIT) precursors in Na Cl flux. However, the as-synthesized Bi4Ti3O12 grains transform into reticular particles and finally into rods at higher temperature in Na Cl and KCl compounds. Besides, cubic ST particles are also prepared using different precursors as a comparative experiment. This study provides a strategy for further investigations in designing the morphology-controlled particles and efficient anisotropic materials of perovskite structure such as ferroelectric and photocatalyst.
基金supported by the National Natural Science Foundation of China(Nos.U22A20166,52104141,12172230 and U2013603)the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012654).
文摘Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333 and 42277147)。
文摘Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.
基金by the National NaturalScience Foundation of China (Grants 11672335 and 11611530541)China Postdoctoral Science Foundation (Grant 2017M622307)+2 种基金ShandongNatural Science Foundation (Grant ZR201709210320)FundamentalResearch Funds for the Central Universities (Grant18CX0213A)the Endeavour Australia Cheung Kong ResearchFellowship Scholarship from the Australian government.
文摘Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is proposed, combined with a robust smoothed particle hydrodynamics multiphase algorithm (Zhang 2015). The first step of the method is the creation of the virtual liquid-gas interface across the solid surface by means of dummy particles, thus the calculated surface tension near the triple point serves to automatically modulate the dynarnic contact line towards the equilibrium state. We simulate the evolution process of initially square liquid lumps on fiat and curved surfaces. The predictions of droplet profiles are in good agreement with the analytical solutions provided that the macroscopic contact angle is accurately implemented. Compared to the normal correction method, the present method is straightforward without the need to manually alter the normal vectors. This study presents a robust algorithm capable of capturing the physics of the static welling. It may hold great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, ore floatation, etc.
基金Project(171111)supported by Fok Ying Tung Education Foundation,ChinaProjects(cx2018055,cx2019041)supported by the Venture&Innovation Support Program for Chongqing Overseas Returnees,China。
文摘A simple method was proposed to produce tungsten(W)particles with controllable shape and size by employing the salt-assisted hydrogen reduction.W particles with controlled shape and size were prepared by adjusting the amount of chlorine salts and the temperature.After adding salt additives,the dispersibility of final particles was obviously improved and more adequate growth of particles was obtained.It was found that the effect of NaCl and LiCl is particularly significant.The average sizes of the obtained W particles at 1038 K after adding 0.1 wt.%NaCl and 0.1 wt.%LiCl were 0.924 and 1.128μm,respectively.With the increase of temperature and amount of chlorine salts,the dispersity of the produced W particles became much better,the size of W sub-particles was increased,and the shape of W sub-particles was changed from spherical to polyhedral.At 1349 K,the addition of chlorine salts even multiplied the particle size,and the average sizes of W particles with 1 wt.%NaCl and 1 wt.%LiCl were raised up to 21.367 and 29.665μm,respectively.Based on the conventional pseudomorphic transformation and chemical vapor transport mechanisms,the effects of adding salts on the reaction mechanism were investigated in detail as well.
基金This work was supported by The National Key Project for Fundamental Research"Macromolecular Condensed State".
文摘Tapping mode atomic force microscope has been applied to observe single-chain PMMA particles which were stored for six months at room temperature after sprayed hom very dilute solutions in good solvents, good/poor mixed solvents, and a theta solvent. Monodisperse PMMA standards of molecular weights ranging from 7.90 x 10(4) to 1.3 x 10(6) were used to investigate the effect of molecular weight on the size of the single-chain PMMA particles. These single-chain particles showed close to spherical shapes. The morphology of single-chain PMMA particles of a given molecular weight was found to be identical in spite of different solvents used for solution spraying. Molecular weight dependence of the particle dimension was also found. The diameters of single-chain PMMA particles after correction of tip-geometry effect were compared to the values estimated from molecular weight and density.