期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Determination of 15 phthalate esters in air by gas-phase and particle-phase simultaneous sampling 被引量:7
1
作者 Chenchen Chi Meng Xia +3 位作者 Chen Zhou Xueqing Wang Mili Weng Xueyou Shen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期137-145,共9页
Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 h... Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air. 展开更多
关键词 Air pollution Phthalate esters Traffic micro-environment Gas-phase and particle-phase Sampling and analytical method
原文传递
Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst 被引量:5
2
作者 Hong Zhao Yunshan Ge +3 位作者 Tiezhu Zhang Jipeng Zhang Jianwei Tan Hongxin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第10期2027-2033,共7页
The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound(VOC), carbonyl compoun... The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound(VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon(PAH) emissions were tested at European Steady State Cycle(ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter(FBC–DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and4.9 mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC–DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8 mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3 mg/kWh respectively. The specific reactivity(SR) with DPF was reduced from 6.68 to 6.64 mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent(BaPeq) with DPF had increased from 0.016 to 0.030 mg/kWh.Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions. 展开更多
关键词 Fuel-borne catalyst DPF VOCs Carbonyl compounds particle-phase PAHs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部