Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks obs...Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.展开更多
Homogeneous void nucleation in metals containing arbitrary vacancies and interstitials has been reexamined,with corrections made to the original work by Katz and Wiedersich.The void size distributions derived previous...Homogeneous void nucleation in metals containing arbitrary vacancies and interstitials has been reexamined,with corrections made to the original work by Katz and Wiedersich.The void size distributions derived previously missed an exponential modification function with void size as the exponent.As a result,void nucleation under a given vacancy supersaturation ratio is underestimated by orders of magnitude.The second improvement arises from the accuracy in calculating the vacancy arrival rate to a void.The present work proposes establishing a direct relationship between the vacancy arrival rate and the available self-diffusion coefficient.With these corrections and improvements,void nucleation in pure Fe is calculated as an example,and an analytic fitting formula is provided.The required vacancy supersaturation ratio and interstitial-to-vacancy flux ratio for void nucleation calculations can be easily obtained from an analytical solution of rate theory calculations,in which dislocation density and displacements per atom(dpa)rate are adjustable inputs.Alternatively,the nucleation rate calculation can be incorporated into rate theory calculations considering evolving dislocation densities,which leads to time-dependent void nucleation.展开更多
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol...Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design.展开更多
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr...The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.展开更多
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu...It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .展开更多
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has...Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.展开更多
Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable...Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively.展开更多
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ...Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.展开更多
Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary an...Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation.Surprisingly,we found that theα-Mg andβ-Mg_(17)Al_(12) in the AZ80 alloy can be simultaneously refined after 0.2 wt.%Sm addition,with the grain size decreasing from∼217±15μm to∼170±10μm and theβ-Mg_(17)Al_(12) morphology changing from a typical continuous network to a nod-like or spherical structure.The simultaneous refinement mechanism is investigated through solidification simulation,transmission electron microscopy(TEM),and differential thermal analysis(DTA).In the AZ80-0.2Sm alloy,many Al8Mn4Sm particles can be observed near the center of theα-Mg grains or inside theβ-Mg_(17)Al_(12).Crystallographic calculations further reveal that the Al8Mn4Sm has good crystallographic matching with both theα-Mg andβ-Mg_(17)Al_(12),so it possesses the potency to serve as heterogeneous nucleation sites for both phases.The promoted heterogeneous nucleation on the Al8Mn4Sm decreases the undercooling required by the nucleation of the primary and eutectic phases,which enhances the heterogeneous nucleation rate,thus causing the simultaneous refinement of theα-Mg andβ-Mg_(17)Al_(12).The orientation relationships between the Al8Mn4Sm and Mg/Mg_(17)Al_(12) are identified,which are[1210]_(Mg)//[010]_(Al8Mn4Sm),(1010)_(Mg)//(301)_(Al8Mn4Sm) and[112]_(Mg_(17)Al_(12))//[010]_(Al8Mn4Sm),(110)_(Mg_(17)Al_(12))//(301)_(Al8Mn4Sm),respectively.Furthermore,the refinement of theβ-Mg_(17)Al_(12) accelerates its dissolution during the solution treatment,which is beneficial for cost saving in industrial applications.Other Al8Mn4RE compounds such as Al8Mn4Y might have the same positive effect on the simultaneous refinement due to the similar physicochemical properties of rare earth elements.This work not only proves the possibility of simultaneously refining the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation,but also provides new insights into the development of refiners for cast Mg alloys.展开更多
The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There i...The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There is still a lack of clear physical pictures about the central question how various features of material surfaces affect their capability in facilitating ice nucleation. Via molecular dynamics simulations, here we show that the detailed features of surfaces, such as atomic arrangements, lattice parameters, hydrophobicity, and function forms of surfaces’ interaction to water molecules, generally affect the ice nucleation through the average adsorption energy per unit-area surfaces to individual water molecules, when the lattice of surfaces mismatches that of ice. However, for the surfaces whose lattice matches ice, even the detailed function form of the surfaces’ interaction to water molecules can largely regulate the icing ability of these surfaces. This study provides new insights into understanding the diverse relationship between various microscopic features of different material surfaces and their nucleation efficacy.展开更多
According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects....According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects. An enclosed spherical liquid cavity surrounded by elastic medium is introduced to model the nucleation process in tissue. Based on the equilibrium pressure relationship of a quasi-static process, the expressions of the threshold and the modified nucleation rate are derived by considering the tissue elasticity. It is shown that the constraint plays an important role in the nucleation process. There is a positive correlation between nucleation threshold pressure and constraint, which can be enhanced by an increasing tissue elasticity and reducing the size of the cavity. Meanwhile, temperature is found to be a key parameter of nucleation process, and cavitation is more likely to occur in confined liquids at temperature T > 100℃. In contrast, less influences are induced by these factors, such as bulk modulus, liquid cavity size, and acoustic frequency. Although these theoretical predictions of the thresholds have been demonstrated by many previous researches, much lower thresholds can be obtained in liquids containing dissolved gases, e.g., the nucleation threshold is about-21 MPa in a liquid of 0.8-nm gas nuclei at room temperature. Moreover, when there is a gas nucleus of 20 nm, the theoretical threshold pressure might be less than1 MPa.展开更多
The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing ...The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.展开更多
Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium...Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.展开更多
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco...Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.展开更多
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri...A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.展开更多
Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected...Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected. Based on the compre-hensive analysis of main factors and induced factors, the standard for risk grades of this disease was promoted and northeast region of China was divided into 4 districts with different risk grades: seriously occurring district, commonly occurring district, occasionally occurring district, and un-occurring district. Nonlinear regression analysis for six model curves showed that the Richard growth model was suitable for describing the temporal dynamics of poplar INA bacterial canker. By stepwise variable selection method, the multi-variable linear regression forecasting equation was set up to predict the next year抯 disease index, and the GM (1,1) model was also set up by grey method to submit middle or long period forecast.展开更多
Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane...Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.展开更多
Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system,...Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system, if the mole fraction of one component is very small, then it can be taken as the impurity of the other component. In this work, the effect of impurity on critical conditions of colloidal cluster nucleation was studied by Carnahan-Starling state equation and the principle of entropy maximum. The results show that, even the mole fraction of small-spheres is very small, the critical volume fraction is obvious smaller than that of one component system, so the influence on critical volume fraction from impurity is very huge and cannot be ignored. In addition, it is also found that, the larger the volume fraction of the system is, the larger cluster density can be packed, however, the critical size of nucleating cluster is almost independent of the density of the cluster.展开更多
文摘Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.
基金The work was partially supported by Triad National Security,LLC,through award M2101345-01-47042-00001.
文摘Homogeneous void nucleation in metals containing arbitrary vacancies and interstitials has been reexamined,with corrections made to the original work by Katz and Wiedersich.The void size distributions derived previously missed an exponential modification function with void size as the exponent.As a result,void nucleation under a given vacancy supersaturation ratio is underestimated by orders of magnitude.The second improvement arises from the accuracy in calculating the vacancy arrival rate to a void.The present work proposes establishing a direct relationship between the vacancy arrival rate and the available self-diffusion coefficient.With these corrections and improvements,void nucleation in pure Fe is calculated as an example,and an analytic fitting formula is provided.The required vacancy supersaturation ratio and interstitial-to-vacancy flux ratio for void nucleation calculations can be easily obtained from an analytical solution of rate theory calculations,in which dislocation density and displacements per atom(dpa)rate are adjustable inputs.Alternatively,the nucleation rate calculation can be incorporated into rate theory calculations considering evolving dislocation densities,which leads to time-dependent void nucleation.
基金support from the National Natural Science Foundation of China(Grant Nos.52372083,52173255),the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment(Co-constructed by Jiangsu Province and Ministry of Education)support from the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230538).
文摘Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design.
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金National Research Foundation,Grant/Award Numbers:NRF‐2018R1A5A1025594,NRF‐2022M3J1A1062644。
文摘The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.
文摘It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .
基金supported by the National Key R&D Program of China (2022YFB3305400)Beijing Natural Science Foundation (Z220021)+3 种基金Science and Technology Innovation Program Talent Cultivation Project of Beijing Institute of Technology (2021CX01012)the National Natural Science Foundation of China (51972030, 22202011)Beijing Outstanding Young Scientists Program (BJJWZYJH01201910007023)Natural Science Foundation of Shandong Province (ZR2022QB056)。
文摘Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.
基金supported by Jiangsu University(No.19JDG011)the Project of the National Natural Science Foundation of China(Nos.51874272,52111540265)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-23).
文摘Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively.
基金financially supported by the National Natural Science Foundation of China(21674068,52173133,52161145402)the Sichuan Science and Technology Department(2021YFH0180)。
文摘Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.
基金Financial supports from The National Natural Science Foundation of China(Nos.52104376,U19A2084,52074132,and 52004100)China Postdoctoral Science Foundation(2021T140250 and 2021M701376)+1 种基金Partial financial support came from The Science and Technology Development Program of Jilin Province(Nos.20200401025GX and 20200201002JC)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)。
文摘Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation.Surprisingly,we found that theα-Mg andβ-Mg_(17)Al_(12) in the AZ80 alloy can be simultaneously refined after 0.2 wt.%Sm addition,with the grain size decreasing from∼217±15μm to∼170±10μm and theβ-Mg_(17)Al_(12) morphology changing from a typical continuous network to a nod-like or spherical structure.The simultaneous refinement mechanism is investigated through solidification simulation,transmission electron microscopy(TEM),and differential thermal analysis(DTA).In the AZ80-0.2Sm alloy,many Al8Mn4Sm particles can be observed near the center of theα-Mg grains or inside theβ-Mg_(17)Al_(12).Crystallographic calculations further reveal that the Al8Mn4Sm has good crystallographic matching with both theα-Mg andβ-Mg_(17)Al_(12),so it possesses the potency to serve as heterogeneous nucleation sites for both phases.The promoted heterogeneous nucleation on the Al8Mn4Sm decreases the undercooling required by the nucleation of the primary and eutectic phases,which enhances the heterogeneous nucleation rate,thus causing the simultaneous refinement of theα-Mg andβ-Mg_(17)Al_(12).The orientation relationships between the Al8Mn4Sm and Mg/Mg_(17)Al_(12) are identified,which are[1210]_(Mg)//[010]_(Al8Mn4Sm),(1010)_(Mg)//(301)_(Al8Mn4Sm) and[112]_(Mg_(17)Al_(12))//[010]_(Al8Mn4Sm),(110)_(Mg_(17)Al_(12))//(301)_(Al8Mn4Sm),respectively.Furthermore,the refinement of theβ-Mg_(17)Al_(12) accelerates its dissolution during the solution treatment,which is beneficial for cost saving in industrial applications.Other Al8Mn4RE compounds such as Al8Mn4Y might have the same positive effect on the simultaneous refinement due to the similar physicochemical properties of rare earth elements.This work not only proves the possibility of simultaneously refining the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation,but also provides new insights into the development of refiners for cast Mg alloys.
基金supported by the National Natural Science Foundation of China (Grant No. 12174388)。
文摘The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There is still a lack of clear physical pictures about the central question how various features of material surfaces affect their capability in facilitating ice nucleation. Via molecular dynamics simulations, here we show that the detailed features of surfaces, such as atomic arrangements, lattice parameters, hydrophobicity, and function forms of surfaces’ interaction to water molecules, generally affect the ice nucleation through the average adsorption energy per unit-area surfaces to individual water molecules, when the lattice of surfaces mismatches that of ice. However, for the surfaces whose lattice matches ice, even the detailed function form of the surfaces’ interaction to water molecules can largely regulate the icing ability of these surfaces. This study provides new insights into understanding the diverse relationship between various microscopic features of different material surfaces and their nucleation efficacy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232 and 11727813)。
文摘According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects. An enclosed spherical liquid cavity surrounded by elastic medium is introduced to model the nucleation process in tissue. Based on the equilibrium pressure relationship of a quasi-static process, the expressions of the threshold and the modified nucleation rate are derived by considering the tissue elasticity. It is shown that the constraint plays an important role in the nucleation process. There is a positive correlation between nucleation threshold pressure and constraint, which can be enhanced by an increasing tissue elasticity and reducing the size of the cavity. Meanwhile, temperature is found to be a key parameter of nucleation process, and cavitation is more likely to occur in confined liquids at temperature T > 100℃. In contrast, less influences are induced by these factors, such as bulk modulus, liquid cavity size, and acoustic frequency. Although these theoretical predictions of the thresholds have been demonstrated by many previous researches, much lower thresholds can be obtained in liquids containing dissolved gases, e.g., the nucleation threshold is about-21 MPa in a liquid of 0.8-nm gas nuclei at room temperature. Moreover, when there is a gas nucleus of 20 nm, the theoretical threshold pressure might be less than1 MPa.
基金Project(XKY2009035) supported by the Key Laboratory for Ecological-Environment Materials of Jiangsu Province,ChinaProject(11KJD430006) supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(AE201034) supported by the Research Finds of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,China
文摘The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.
基金Project(51304095)supported by the National Natural Science Foundation of ChinaProject(S2013FZ029)supported by Science and Technology Planning Project of Yunnan Province
文摘Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.
基金Project (42-QP-009) support by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.
基金Project(20110933K) supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(2012QNZT002) supported by the Freedom Explore Program of Central South University,ChinaProject(CSUZC2012024) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.
基金National Foundation of Ninth Five-Year Plan (No. 96-005-04-01-03).
文摘Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected. Based on the compre-hensive analysis of main factors and induced factors, the standard for risk grades of this disease was promoted and northeast region of China was divided into 4 districts with different risk grades: seriously occurring district, commonly occurring district, occasionally occurring district, and un-occurring district. Nonlinear regression analysis for six model curves showed that the Richard growth model was suitable for describing the temporal dynamics of poplar INA bacterial canker. By stepwise variable selection method, the multi-variable linear regression forecasting equation was set up to predict the next year抯 disease index, and the GM (1,1) model was also set up by grey method to submit middle or long period forecast.
文摘Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.
文摘Due to depletion interactions, a few of colloidal spheres will be packed into cluster or clusters, even a phase transition may take place if the volume fraction of system is large enough. In a binary colloidal system, if the mole fraction of one component is very small, then it can be taken as the impurity of the other component. In this work, the effect of impurity on critical conditions of colloidal cluster nucleation was studied by Carnahan-Starling state equation and the principle of entropy maximum. The results show that, even the mole fraction of small-spheres is very small, the critical volume fraction is obvious smaller than that of one component system, so the influence on critical volume fraction from impurity is very huge and cannot be ignored. In addition, it is also found that, the larger the volume fraction of the system is, the larger cluster density can be packed, however, the critical size of nucleating cluster is almost independent of the density of the cluster.