Magnesium(Mg)and its alloys have great potential as orthopedic implant candidates,which could release various bioactive substances during degradation.Degradation particles(DPs)are one of the degradation products,but t...Magnesium(Mg)and its alloys have great potential as orthopedic implant candidates,which could release various bioactive substances during degradation.Degradation particles(DPs)are one of the degradation products,but the osteoimmunology effects are still unclear.In this study,the effect of DPs on the polar-ization of macrophages and their release of cytokines was investigated.The results verify that excessive generation of DPs from biodegradable Mg can induce macrophages to realize polarization of proinflamma-tory M1 phenotype.Moreover,macrophages secrete proinflammatory cytokines to inhibit the osteogenic differentiation of rat bone marrow stem cells(rBMSCs).This suggests that the effects of DPs should be considered when evaluating Mg-based implants.DPs continuously produced with the degradation of Mg-based implants may influence osseointegration.展开更多
Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinul...Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation.展开更多
Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will im...Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical meth- ods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD-DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctua- tions, which was consistent with the observed experimental results. These findings provide important information for the accurate aoolication of electrostatic measurement devices in oneumatic conveyors.展开更多
基金This work was financially supported by the Natural Science Foundation of China(No.82160436)the Science and Technol-ogy Commission of Shanghai Municipality(No.19441905600)+2 种基金the“Science and Technology Innovation 2025Major Special Project of Ningbo(No.2019B10064)the Shanghai Jiao Tong Univer-sity Interdisciplinary(Biomedical Engineering)Research Fund(No.ZH2018ZDA09)China Postdoctoral Science Foundation(No.2021M702090).
文摘Magnesium(Mg)and its alloys have great potential as orthopedic implant candidates,which could release various bioactive substances during degradation.Degradation particles(DPs)are one of the degradation products,but the osteoimmunology effects are still unclear.In this study,the effect of DPs on the polar-ization of macrophages and their release of cytokines was investigated.The results verify that excessive generation of DPs from biodegradable Mg can induce macrophages to realize polarization of proinflamma-tory M1 phenotype.Moreover,macrophages secrete proinflammatory cytokines to inhibit the osteogenic differentiation of rat bone marrow stem cells(rBMSCs).This suggests that the effects of DPs should be considered when evaluating Mg-based implants.DPs continuously produced with the degradation of Mg-based implants may influence osseointegration.
基金supported by the Dutch Technology Foundation (STW)which is part of the Netherlands Organization for Scientific Research (NWO)+1 种基金which is partly funded by the Dutch Ministry of Economic Affairsproject (11611) was co-sponsored by Agrifirm, Purac, DSM, Den Ouden, Hofmans, the Dutch commodity boards for dairy and horticulture, and Wageningen University
文摘Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation.
文摘Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic con- veying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical meth- ods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD-DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctua- tions, which was consistent with the observed experimental results. These findings provide important information for the accurate aoolication of electrostatic measurement devices in oneumatic conveyors.