An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, ...An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.展开更多
To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer parti...To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer particles of a PTV system seeded on water surface tend to form conglomerates due to surface tension of water. In addition, they can not float on water surface when water flow is shallow. Ellipsoid particles were used to avoid the above problems. Another important issue is particle recognition. In order to eliminate the influence of noise, particles were recognized by the processing of multi-frame images. The kernel of the improved PTV system is the algorithm for particle tracking. A new 3-frame PTV algorithm was developed. The performance of this algorithm was compared with the conventional 4-frame PTV algorithm and 2-frame PTV algorithm by means of computer simulation using synthetically generated images. The results show that the new 3-frame PTV algorithm can recover more velocity vectors and have lower relative error. In addition, in order to attain the whole flow field from individual flow fields, the method of stitching individual flow fields by obvious marks was worked out. Then the improved PTV system was applied to the measurement of surface flow field in Model Yellow River and shows good performance.展开更多
Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce iso...Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.展开更多
Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtai...Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtained using the technique of Particle Tracking Velocimetry (PTV). The optical amplification technique was employed to measure the instantaneous flow velocities near the bed and the instantaneous bed shear stress was given. The experimental observations revealed a new insight into the oscillation of the large-scale structure and the three-dimensional characteristics of the flow. In particular, very high turbulence intensity, instantaneous horizontal velocity near the bed and the bed shear stress near the reattachment point were observed. The sediment incipient probability obtained from the sequent images of sediment particles near the bed indicates that the critical instantaneous shear stress of the sediment incipience is independent of flow conditions.展开更多
The surface vortex in a spillway tunnel intake was investigated in a physical model of the Xiluodu hydropower station.The velocity fields were measured using the particle tracking velocimetry technique.The tangential ...The surface vortex in a spillway tunnel intake was investigated in a physical model of the Xiluodu hydropower station.The velocity fields were measured using the particle tracking velocimetry technique.The tangential velocity formula of the surface flow field was derived based on the Navier-Stokes equations,and this formula greatly improved the consistency between the numerical and experimental data.Also,the formula has the advantage of describing the tangential velocity more accurately than previous formulas.The current research is based on established engineering practices,and the results provide a valuable reference for actual projects designed to prevent and eliminate surface vortexes.展开更多
文摘An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50479068, 50779014)the Technological Innovation Project of Graduate students in Jiangsu Province (Grant No.1306014)the Project of "Six Talent Peak" of Jiangsu Province (Grant No. 07-A-006).
文摘To measure the surface flow in a physical river model, an improved system of Large-Scale Particle Tracking Velocimetry (LSPTV) was proposed and the elements of the PTV system were described. Usually the tracer particles of a PTV system seeded on water surface tend to form conglomerates due to surface tension of water. In addition, they can not float on water surface when water flow is shallow. Ellipsoid particles were used to avoid the above problems. Another important issue is particle recognition. In order to eliminate the influence of noise, particles were recognized by the processing of multi-frame images. The kernel of the improved PTV system is the algorithm for particle tracking. A new 3-frame PTV algorithm was developed. The performance of this algorithm was compared with the conventional 4-frame PTV algorithm and 2-frame PTV algorithm by means of computer simulation using synthetically generated images. The results show that the new 3-frame PTV algorithm can recover more velocity vectors and have lower relative error. In addition, in order to attain the whole flow field from individual flow fields, the method of stitching individual flow fields by obvious marks was worked out. Then the improved PTV system was applied to the measurement of surface flow field in Model Yellow River and shows good performance.
文摘Our previous study showed that the frictional drag decreases with increasing void fraction at Re〉1300, while it increases at Re 〈 1000. Decomposition of the Reynolds shear stress also implied that bubbles induce isotropy of turbulence. In order to confirm our previous analysis and to further investigate flow fields in the vicinity of bubbles, we analyze velocity fluctuations on the quadrant space in the streamwise and transverse directions (u′-v′ plane). Here, we focus on two specific Reynolds numbers (at Re≈900 and ≈1410, which are close to the laminar-to-turbulent transition regime) and discuss bubble effects on sweep (u′〉 0, v′〈 0 ) and ejection (u′〈 0, v′〉 0) events as a function of the Reynolds number. We also illustrate velocity fluctuations in the vicinity of an individual bubble and a swarm of bubbles on the u′- v′ coordinates. The results show that a bubble swarm suppresses the velocity fluctuations at Re≈1410.
基金Project supported by the National Natural Science Foundation of China(Grant No.10602017).
文摘Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtained using the technique of Particle Tracking Velocimetry (PTV). The optical amplification technique was employed to measure the instantaneous flow velocities near the bed and the instantaneous bed shear stress was given. The experimental observations revealed a new insight into the oscillation of the large-scale structure and the three-dimensional characteristics of the flow. In particular, very high turbulence intensity, instantaneous horizontal velocity near the bed and the bed shear stress near the reattachment point were observed. The sediment incipient probability obtained from the sequent images of sediment particles near the bed indicates that the critical instantaneous shear stress of the sediment incipience is independent of flow conditions.
基金Supported by Tsinghua University Initiative Scientific ResearchProgram (No 2009THZ07060)the State Key Laboratory ofHydroscience and Engineering of Tsinghua University (Nos2008-ZY-5 and 2009-TC-2)
文摘The surface vortex in a spillway tunnel intake was investigated in a physical model of the Xiluodu hydropower station.The velocity fields were measured using the particle tracking velocimetry technique.The tangential velocity formula of the surface flow field was derived based on the Navier-Stokes equations,and this formula greatly improved the consistency between the numerical and experimental data.Also,the formula has the advantage of describing the tangential velocity more accurately than previous formulas.The current research is based on established engineering practices,and the results provide a valuable reference for actual projects designed to prevent and eliminate surface vortexes.